• Chinese Optics Letters
  • Vol. 20, Issue 1, 011403 (2022)
Feifei Wang1, Jiatong Li1, Xiaohui Sun1, Bingzheng Yan1, Hongkun Nie1、**, Xun Li4, Kejian Yang1、2, Baitao Zhang1、2、*, and Jingliang He1、2、3
Author Affiliations
  • 1State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, Shandong University, Jinan 250100, China
  • 2Key Laboratory of Laser & Infrared System, Ministry of Education, Shandong University, Qingdao 266237, China
  • 3Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
  • 4State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics of CAS, Xi’an 710119, China
  • show less
    DOI: 10.3788/COL202220.011403 Cite this Article Set citation alerts
    Feifei Wang, Jiatong Li, Xiaohui Sun, Bingzheng Yan, Hongkun Nie, Xun Li, Kejian Yang, Baitao Zhang, Jingliang He. High-power and high-efficiency 4.3 µm ZGP-OPO[J]. Chinese Optics Letters, 2022, 20(1): 011403 Copy Citation Text show less
    References

    [1] H. Gebbie, W. Harding, C. Hilsum, A. Pryce, V. Roberts. Atmospheric transmission in the 1 to 14  µm region. Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences, 206(1951).

    [2] M. E. Zadeh, K. Vodopyanov. Mid-infrared coherent sources and applications: introduction. J. Opt. Soc. Am. B, 33, MIC1(2016).

    [3] P. Weibring, H. Edner, S. Svanberg. Versatile mobile lidar system for environmental monitoring. Appl. Opt., 42, 3583(2003).

    [4] J. Hecht. History of gas lasers, part 1–continuous wave gas lasers. Opt. Photon. News, 21, 16(2010).

    [5] M. Zhong, G. Ren. 3–5 µm mid-infrared laser countermeasure weapon system. J. Sichuan Ordnance Eng., 28, 3(2007).

    [6] K. L. Vodopyanov, F. Ganikhanov, J. P. Maffetone, I. Zwieback, W. Ruderman. ZnGeP2 optical parametric oscillator with 3.8–12.4-µm tunability. Opt. Lett., 25, 841(2000).

    [7] S. Haidar, K. Miyamoto, H. Ito. Generation of tunable mid-IR (5.5–9.3 µm) from a 2-µm pumped ZnGeP2 optical parametric oscillator. Opt. Commun., 241, 173(2004).

    [8] C. Li, J. J. Xie, Q. K. Pan, F. Chen, Y. He, K. Zhang. Advances in mid-infrared optical parametric oscillators. Chin. Opt., 9, 615(2016).

    [9] B. Q. Yao, Y. L. Wang, Y. Z. Wang, W. J. He. Performance evaluation of ZnGeP2 optical parametric oscillator pumped by a Q-switched Tm, Ho:GdVO4 laser. Chin. Opt. Lett., 6, 68(2008).

    [10] X. M. Duan, L. J. Li, Y. J. Shen, B. Q. Yao, Y. Z. Wang. Efficient middle-infrared ZGP-OPO pumped by a Q-switched Ho:LuAG laser with the orthogonally polarized pump recycling scheme. Appl. Opt., 57, 8102(2018).

    [11] B. Q. Yao, Y. J. Shen, X. M. Duan, T. Y. Dai, Y. L. Ju, Y. Z. Wang. A 41-W ZnGeP2 optical parametric oscillator pumped by a Q-switched Ho:YAG laser. Opt. Lett., 39, 6589(2014).

    [12] D. G. Lancaster. Efficient Nd:YAG pumped mid-IR laser based on cascaded KTP and ZGP optical parametric oscillators and a ZGP parametric amplifier. Opt. Commun., 282, 272(2009).

    [13] Y. F. Peng, X. B. Wei, W. M. Wang. Mid-infrared optical parametric oscillator based on ZnGeP2 pumped by 2-µm laser. Chin. Opt. Lett., 9, 061403(2011).

    [14] D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, M. Jiang. Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 µm Tm-doped fiber laser. Opt. Lett., 33, 315(2008).

    [15] M. Gebhardt, C. Gaida, P. Kadwani, A. Sincore, N. Gehlich, C. Jeon, L. Shah, M. Richardson. High peak-power mid-infrared ZnGeP2 optical parametric oscillator pumped by a Tm:fiber master oscillator power amplifier system. Opt. Lett., 39, 1212(2014).

    [16] B. Cole, L. Goldberg, S. Chinn, L. A. Pomeranz, K. T. Zawilski, P. G. Schunemann, J. McCarthy. Compact and efficient mid-IR OPO source pumped by a passively Q-switched Tm:YAP laser. Opt. Lett., 43, 1099(2018).

    [17] Y. J. Shen, B. Q. Yao, Z. Cui, X. M. Duan, Y. L. Ju, Y. Z. Wang. A ring ZnGeP2 optical parametric oscillator pumped by a Ho:LuAG laser. Appl. Phys. B, 117, 127(2014).

    [18] E. Lippert, H. Fonnum, G. Arisholm, K. Stenersen. A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator. Opt. Express, 18, 26475(2010).

    [19] Y. J. Shen, B. Q. Yao, X. M. Duan, G. L. Zhu, W. Wang, Y. L. Ju, Y. Z. Wang. 103 W in-band dual-end-pumped Ho:YAG laser. Opt. Lett., 37, 3558(2012).

    [20] A. Dergachev, D. Armstrong, A. Smith, T. Drake, M. Dubois. 3.4-µm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-µm Ho:YLF MOPA system. Opt. Express, 15, 14404(2007).

    [21] E. C. Ji, M. M. Nie, Q. Liu. 13.5 mJ polarized 2.09 µm fiber-bulk holmium laser and its application to a mid-infrared ZnGeP2 optical parametric oscillator. Chin. Opt. Lett., 15, 091402(2017).

    [22] M. Schellhorn, G. Spindler, M. Eichhorn. Mid-infrared ZGP OPO with divergence compensation and high beam quality. Opt. Express, 26, 1402(2018).

    [23] L. Guo. Study on high-performance rare-earth ions doped mid-infrared solid-state lasers and optical parametric oscillators(2020).

    Data from CrossRef

    [1] Tingwei Ren, Chunting Wu, Yongji Yu, Tongyu Dai, Fei Chen, Qikun Pan. Development Progress of 3–5 μm Mid-Infrared Lasers: OPO, Solid-State and Fiber Laser. Applied Sciences, 11, 11451(2021).

    Feifei Wang, Jiatong Li, Xiaohui Sun, Bingzheng Yan, Hongkun Nie, Xun Li, Kejian Yang, Baitao Zhang, Jingliang He. High-power and high-efficiency 4.3 µm ZGP-OPO[J]. Chinese Optics Letters, 2022, 20(1): 011403
    Download Citation