• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 2, 189 (2021)
Guo-Wu MA*, Lin-Lin HU, Ting-Ting ZHUO, Di-Min SUN, Qi-Li HUANG, Zao-Jin ZENG, and Yi JIANG
Author Affiliations
  • Institute of Applied Electronics, China Academy of Enginnering Physics, Mianyang 621900, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.02.009 Cite this Article
    Guo-Wu MA, Lin-Lin HU, Ting-Ting ZHUO, Di-Min SUN, Qi-Li HUANG, Zao-Jin ZENG, Yi JIANG. Development and test of 140 GHz / 50 kW Gyrotron[J]. Journal of Infrared and Millimeter Waves, 2021, 40(2): 189 Copy Citation Text show less
    References

    [1] M Thumm, S Alberti, A Arnold et al. EU megawatt-class 140-GHz CW gyrotron. IEEE transactions on plasma science, 35, 143-153(2007).

    [2] K Sakamoto, A Kasugai, K Kajiwara et al. Progress of high power 170 GHz gyrotron in JAEA. Nuclear Fusion, 49, 181-186(2009).

    [3] A G Litvak, G G Denisov, V E Myasnikov et al. Development in Russia of Megawatt Power Gyrotrons for Fusion. Journal of Infrared Millimeter & Terahertz Waves, 32, 337-342(2011).

    [4] M Y Glyavin, A G Luchinin, G Y Golubiatnikov. Generation of 1.5-kW, 1-THz Coherent Radiation from a Gyrotron with a Pulsed Magnetic Field. Physical Review Letters, 100, 015101.1-015101.3(2008).

    [5] T Idehara, I Ogawa, T Saito et al. Development of THz gyrotrons and application to high power THz technologies. Terahertz Science and Technology, 1, 100-106(2008).

    [6] M Thumm. State-of-the-Art of High-Power Gyro-Devices and Free Electron Masers. Journal of Infrared, Millimeter, and Terahertz Waves, 1-140(2020).

    [7] G S Nusinovich, M K A Thumm, M I Petelin. The gyrotron at 50: Historical overview. Journal of Infrared, Millimeter, and Terahertz Waves, 35, 325-381(2014).

    [8] T Idehara, T Saito, I Ogawa et al. Development of Terahertz FU CW Gyrotron Series for DNP. Applied Magnetic Resonance, 34, 265-275(2008).

    [9] V Vitzthum, M A Caporini, G Bodenhausen. Solid-state nitrogen-14 nuclear magnetic resonance enhanced by dynamic nuclear polarization using a gyrotron. Journal of Magnetic Resonance, 205, 177-179(2010).

    [10] I N Sudiana, R Ito, S Inagaki et al. Densification of alumina ceramics sintered by using submillimeter wave gyrotron. Journal of Infrared, Millimeter, and Terahertz Waves, 34, 627-638(2013).

    [11] D Lewis Iii, M A Imam, A W Fliflet et al. Recent Advances in Microwave and Millimeter-Wave Processing of Materials. Materials Science Forum, 539-543, 3249-3254(2007).

    [12] Shao-Hui Shi, Pu-Kun Liu, Chao-Hai Du et al. A W band second harmonic gyrotron oscillator. Journal of infrared and millimeter waves, 32, 408-413(2013).

    [13] G W Ma, Y H Huang, T T Zhuo et al. Experimental study of a 95GHz gyrotron, 1-2(2015).

    [14] L L Hu, G W Ma, D M Sun et al. Development of a 140 GHz 50kW Gyrotron in IAE, 1-2(2019).

    [15] W C Guss, T L Grimm, K E Kreischer et al. Velocity ratio measurements of a gyrotron electron beam. Journal of Applied Physics, 69, 3789-3795(1991).

    [16] J Paulini, T Klein, G Simon. Thermo-field emission and the Nottingham effect. Journal of Physics D: Applied Physics, 26, 1310-1315(1993).

    Guo-Wu MA, Lin-Lin HU, Ting-Ting ZHUO, Di-Min SUN, Qi-Li HUANG, Zao-Jin ZENG, Yi JIANG. Development and test of 140 GHz / 50 kW Gyrotron[J]. Journal of Infrared and Millimeter Waves, 2021, 40(2): 189
    Download Citation