• Laser & Optoelectronics Progress
  • Vol. 57, Issue 7, 071601 (2020)
Hao Li1, Zhenzhen Cui1, Weiqing Chen1, Yufang Qiao1, Jiangyan Cao1, Mingyu Zhang3, Xi Yang3, Xue Yu1, Siu Fung Yu2, Jianbei Qiu1、**, and Xuhui Xu1、*
Author Affiliations
  • 1Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
  • 2Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China
  • 3Yunnan Province Energy Research Institute Co. Ltd., Kunming, Yunnan 650093, China
  • show less
    DOI: 10.3788/LOP57.071601 Cite this Article Set citation alerts
    Hao Li, Zhenzhen Cui, Weiqing Chen, Yufang Qiao, Jiangyan Cao, Mingyu Zhang, Xi Yang, Xue Yu, Siu Fung Yu, Jianbei Qiu, Xuhui Xu. Research Progress on Rare Earth Doped Fluoride Multiband Upconversion Laser[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071601 Copy Citation Text show less
    References

    [1] Johnson L F, Guggenheim H J. Infrared-pumped visible laser[J]. Applied Physics Letters, 19, 44-47(1971).

    [2] Dong H, Sun L D, Feng W et al. Versatile spectral and lifetime multiplexing nanoplatform with excitation orthogonalized upconversion luminescence[J]. ACS Nano, 11, 3289-3297(2017).

    [3] Rinkel T, Raj A N, Dühnen S et al. Synthesis of 10 nm β-NaYF4∶ Yb, Er/NaYF4 core/shell upconversion nanocrystals with 5 nm particle cores[J]. Angewandte Chemie International Edition, 55, 1164-1167(2016).

    [4] Han S Y, Qin X, An Z F et al. Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water[J]. Nature Communications, 7, 1-7(2016).

    [5] Dong H, Sun L D, Yan C H. Basic understanding of the lanthanide related upconversion emissions[J]. Nanoscale, 5, 5703-5714(2013).

    [6] Deng R R, Qin F, Chen R F et al. Temporal full-colour tuning through non-steady-state upconversion[J]. Nature Nanotechnology, 10, 237-242(2015).

    [7] Ding B B, Peng H Y, Qian H S et al. Unique upconversion core-shell nanoparticles with tunable fluorescence synthesized by a sequential growth process[J]. Advanced Materials Interfaces, 3, 1500649(2016).

    [8] Wang F, Deng R R, Liu X G. Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes[J]. Nature Protocols, 9, 1634-1644(2014).

    [9] Fikouras A H, Schubert M, Karl M et al. Non-obstructive intracellular nanolasers[J]. Nature Communications, 9, 4817(2018).

    [10] Liu Y W, Teitelboim A, Fernandez-Bravo A et al. Controlled assembly of upconverting nanoparticles for low-threshold microlasers and their imaging in scattering media[J]. ACS Nano, 14, 1508-1519(2020).

    [11] Yoshida H, Yamashita Y, Kuwabara M et al. A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode[J]. Nature Photonics, 2, 551-554(2008).

    [12] Hou C C, Chen H M, Zhang J C et al. Near-infrared and mid-infrared semiconductor broadband light emitters[J]. Light: Science & Applications, 7, 17170(2018).

    [13] Razeghi M. High-power laser diodes based on InGaAsP alloys[J]. Nature, 369, 631-633(1994).

    [14] Ponce F A, Bour D P. Nitride-based semiconductors for blue and green light-emitting devices[J]. Nature, 386, 351-359(1997).

    [15] Hulicius E. Semiconductor lasers for medical applications[J]. Lasers for Medical Applications, 222-250(2013).

    [16] Susilo N, Hagedorn S, Jaeger D et al. AlGaN-based deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire[J]. Applied Physics Letters, 112, 041110(2018).

    [17] Sun Y, Zhou K, Sun Q et al. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si[J]. Nature Photonics, 10, 595-599(2016).

    [18] Tran B T, Hirayama H. Growth andfabrication of high external quantum efficiency AlGaN-based deep ultraviolet light-emitting diode grown on pattern Si substrate[J]. Scientific Reports, 7, 12176(2017).

    [19] Zhang W F, Zhu H, Yu S F et al. Observation of lasing emission from carbon nanodots in organic solvents[J]. Advanced Materials, 24, 2263-2267(2012).

    [20] Zhu H, Zhang W F, Yu S F. Realization of lasing emission from graphene quantum dots using titanium dioxide nanoparticles as light scatterers[J]. Nanoscale, 5, 1797-1802(2013).

    [21] Zhang W F, Jin L M, Yu S F et al. Wide-bandwidth lasing from C-dot/epoxy nanocomposite Fabry-Perot cavities with ultralow threshold[J]. Journal of Materials Chemistry C, 2, 1525-1531(2014).

    [22] Zhu H, Su S C, Yu S F et al. Ultravioletlasing characteristics of ZnS microbelt lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1501705(2013).

    [23] Xu X H, Zhang W F, Jin L M et al. Random lasing in Eu 3+doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation[J]. Nanoscale, 7, 16246-16250(2015).

    [24] Fan F J. VoznyyO, Sabatini R P, et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy[J]. Nature, 544, 75-79(2017).

    [25] Grim J Q. Christodoulou S, di Stasio F, et al. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells[J]. Nature Nanotechnology, 9, 891-895(2014).

    [26] Samuel I D W, Turnbull G A. Organic semiconductor lasers[M]. //Organic semiconductors. Berlin: Verlag Chemie(2007).

    [27] Zhou W, Dridi M, Suh J Y et al. Lasing action in strongly coupled plasmonic nanocavity arrays[J]. Nature Nanotechnology, 8, 506-511(2013).

    [28] Haider G, Lin H I, Yadav K et al. A highly-efficient single segment white random laser[J]. ACS Nano, 12, 11847-11859(2018).

    [29] Schuck P J, Willets K A, Fromm D P et al. A novel fluorophore for two-photon-excited single-molecule fluorescence[J]. Chemical Physics, 318, 7-11(2005).

    [30] Carlos L D. Ferreira R A S. Bermudez and SJL ribeiro[J]. Advanced Materials, 21, 509-534(2009).

    [31] Wang F, Liu X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J]. Chemical Society Reviews, 38, 976-989(2009).

    [32] Gu B, Zhang Q C. Recent advances on functionalized upconversion nanoparticles for detection of small molecules and ions in biosystems[J]. Advanced Science, 5, 1700609(2018).

    [33] Wu S, Han G, Milliron D J et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 10917-10921(2009).

    [34] Haase M, Schäfer H. Upconverting nanoparticles[J]. Angewandte Chemie International Edition, 50, 5808-5829(2011).

    [35] Sun L D, Wang Y F, Yan C H. Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra[J]. Accounts of Chemical Research, 47, 1001-1009(2014).

    [36] Qiu X M. Research on new rare earth laser materials[D]. Shanghai: Fudan University(2008).

    [37] Zhu H, Chen X, Jin L M et al. Amplified spontaneous emission and lasing from lanthanide-doped up-conversion nanocrystals[J]. ACS Nano, 7, 11420-11426(2013).

    [38] Xu X H, Zhang W F, Yang D C et al. Phonon-assisted population inversion in lanthanide-doped upconversion Ba2LaF7Nanocrystals in glass-ceramics[J]. Advanced Materials, 28, 8045-8050(2016).

    [39] Wang T, Siu C K, Yu H et al. Influence of plasmonic effect on the upconversion emission characteristics of NaYF4 hexagonal microrods[J]. Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics(2018).

    [40] Armani D K, Kippenberg T J, Spillane S M et al. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons[J]. Nature, 421, 925-928(2003).

    [42] Chen X, Jin L M, Kong W et al. Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing[J]. Nature Communications, 7, 10304(2016).

    [43] Chen X, Jin L M, Sun T Y et al. Energymigration upconversion in Ce(III)-doped heterogeneous core-shell-shell nanoparticles[J]. Small, 13, 1701479(2017).

    [44] Jin L M, Wu Y K, Wang Y J et al. Mass-manufactural lanthanide-based ultraviolet B microlasers[J]. Advanced Materials, 31, 1807079(2019).

    [45] Fernandez-Bravo A, Yao K Y, Barnard E S et al. Continuous-wave upconverting nanoparticle microlasers[J]. Nature Nanotechnology, 13, 572-577(2018).

    [46] Bian WJ, Lin Y, Wang T et al. Direct identification of surface defects and their influence on the optical characteristics of upconversion nanoparticles[J]. ACS Nano, 12, 3623-3628(2018).

    [47] Fernandez-Bravo A, Yao K Y, Barnard E S et al. Continuous-wave upconverting nanoparticle microlasers[J]. Nature Nanotechnology, 13, 572-577(2018).

    [48] Du Y Y, Wang Y F, Deng Z Q et al. Blue-pumped deep ultraviolet lasing from lanthanide-doped Lu6O5F8 upconversion nanocrystals[J]. Advanced Optical Materials, 8, 1900968(2020).

    Hao Li, Zhenzhen Cui, Weiqing Chen, Yufang Qiao, Jiangyan Cao, Mingyu Zhang, Xi Yang, Xue Yu, Siu Fung Yu, Jianbei Qiu, Xuhui Xu. Research Progress on Rare Earth Doped Fluoride Multiband Upconversion Laser[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071601
    Download Citation