• Opto-Electronic Engineering
  • Vol. 46, Issue 12, 190159 (2019)
Hou Zhiqiang1、2, Liu Xiaoyi1、2、*, Yu Wangsheng3, and Ma Sugang1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2019.190159 Cite this Article
    Hou Zhiqiang, Liu Xiaoyi, Yu Wangsheng, Ma Sugang. Improved algorithm of Faster R-CNN based on double threshold-non-maximum suppression[J]. Opto-Electronic Engineering, 2019, 46(12): 190159 Copy Citation Text show less
    References

    [1] Borji A, Cheng M M, Jiang H Z, et al. Salient object detection: a benchmark[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5706–5722.

    [2] Luo H B, Xu L Y, Hui B, et al. Status and prospect of target tracking based on deep learning[J]. Infrared and Laser Engineering, 2017, 46(5): 0502002.

    [3] Hou Z Q, Han C Z. A survey of visual tracking[J]. Acta Automatica Sinica, 2006, 32(4): 603–617.

    [4] Xin P, Xu Y L, Tang H, et al. Fast airplane detection based on multi-layer feature fusion of fully convolutional networks[J]. Acta Optica Sinica, 2018, 38(3): 0315003.

    [5] Dai W C, Jin L X, Li G N, et al. Real-time airplane detection algorithm in remote-sensing images based on improved YOLOv3[J]. Opto-Electronic Engineering, 2018, 45(12): 180350.

    [6] Wang S M, Han L L. Moving object detection under complex dynamic background[J]. Opto-Electronic Engineering, 2018, 45(10): 180008.

    [7] Zhou X Y, Liu J, Lu X, et al. A method for pedestrian detection by combining textual and visual information[J]. Acta Electronica Sinica, 2017, 45(1): 140–146.

    [8] Cao M W, Yu Y. Moving object detection based on multi-layer background model[J]. Acta Electronica Sinica, 2016, 44(9): 2126–2133.

    [9] Zhang Z S, Qiao S Y, Xie C H, et al. Single-shot object detection with enriched semantics[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018: 5813–5821.

    [10] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 779–788.

    [11] Liu W, Anguelov D, Erhan D, et al. SSD: single shot MultiBox detector[EB/OL]. (2016-12-29) [2019-05-28]. arXiv: 1512. 02325 v1. https://arxiv.org/abs/1512.02325v1.

    [12] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.

    [13] He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916.

    [14] Girshick R. Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448.

    [15] Ren S, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[EB/OL]. (2015-06-04)[2019-05-28]. arXiv: 1506.01497. https://arxiv.org/ abs/1506.01497?source=post_page.

    [16] Bodla N, Singh B, Chellappa R, et al. Soft-NMS – improving object detection with one line of code[C]//Proceedings of IEEE International Conference on Computer Vision, Venice, Italy, 2017: 5562–5570.

    [17] He K M, Gkioxari G, Dollár P, et al. Mask R-CNN[C]// Proceedings of IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980–2988.

    [18] Wang X L, Shrivastava A, Gupta A. A-Fast-RCNN: hard positive generation via adversary for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3039–3048.

    [19] Kong T, Sun F C, Yao A B, et al. RON: reverse connection with objectness prior networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5244–5252.

    [20] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6517–6525.

    [21] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, doi: 10.1109/TPAMI.2018.2858826.

    [22] Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2019-05-28]. arXiv: 1804.02767. https://arxiv.org/abs/1804.02767.

    [23] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.

    [24] Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2261–2269.

    CLP Journals

    [1] Zhang Ruzhen, Zhang Jianlin, Qi Xiaoping, Zuo Haorui, Xu Zhiyong. Infrared target detection and recognition in complex scene[J]. Opto-Electronic Engineering, 2020, 47(10): 200314

    Hou Zhiqiang, Liu Xiaoyi, Yu Wangsheng, Ma Sugang. Improved algorithm of Faster R-CNN based on double threshold-non-maximum suppression[J]. Opto-Electronic Engineering, 2019, 46(12): 190159
    Download Citation