• Acta Optica Sinica
  • Vol. 39, Issue 10, 1033003 (2019)
Min Huang**, Yonghui Xi, Xiu Li*, Chunli Guo, and Ruili He
Author Affiliations
  • School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
  • show less
    DOI: 10.3788/AOS201939.1033003 Cite this Article Set citation alerts
    Min Huang, Yonghui Xi, Xiu Li, Chunli Guo, Ruili He. Comparison of Grating Constant Measurement Methods for Plain Rainbow Holographic Materials[J]. Acta Optica Sinica, 2019, 39(10): 1033003 Copy Citation Text show less
    Pictures of rainbow holographic master masks. (a) Light pillar rainbow holographic master masks; (b) plain rainbow holographic master masks
    Fig. 1. Pictures of rainbow holographic master masks. (a) Light pillar rainbow holographic master masks; (b) plain rainbow holographic master masks
    Microstructures of different plain rainbow holographic materials with enlargement of 24000 times. (a)-(d) Planar figures of micro-structures of plain rainbow holographic master masks A, B, C, and D; (e)-(h) solid figures of micro-structures of plain rainbow holographic master masks A, B, C, and D
    Fig. 2. Microstructures of different plain rainbow holographic materials with enlargement of 24000 times. (a)-(d) Planar figures of micro-structures of plain rainbow holographic master masks A, B, C, and D; (e)-(h) solid figures of micro-structures of plain rainbow holographic master masks A, B, C, and D
    Visual appearance and microstructures at different positions of light pillar rainbow holographic material. (a) Visual appearance; (b) microstructures at different positions
    Fig. 3. Visual appearance and microstructures at different positions of light pillar rainbow holographic material. (a) Visual appearance; (b) microstructures at different positions
    Diagrams of geometric measurement conditions of different spectrophotometers. (a) Multi-angle spectrophotometer; (b) 45/0 spectrophotometer
    Fig. 4. Diagrams of geometric measurement conditions of different spectrophotometers. (a) Multi-angle spectrophotometer; (b) 45/0 spectrophotometer
    Measurement results of multi-angle spectrophotometer in condition of 45/0. (a)-(d) Spectral intensity from plain rainbow holographic master masks A, B, C, and D in the directions of 0°-45°; (e)-(h) spectral intensity from plain rainbow holographic master masks A, B, C, and D in the directions of 50°-90°
    Fig. 5. Measurement results of multi-angle spectrophotometer in condition of 45/0. (a)-(d) Spectral intensity from plain rainbow holographic master masks A, B, C, and D in the directions of 0°-45°; (e)-(h) spectral intensity from plain rainbow holographic master masks A, B, C, and D in the directions of 50°-90°
    Results of SpectroEye measurement for each plain rainbow holographic master mask. (a) Mask A; (b) mask B; (c) mask C; (d) mask D
    Fig. 6. Results of SpectroEye measurement for each plain rainbow holographic master mask. (a) Mask A; (b) mask B; (c) mask C; (d) mask D
    Diagram of diffraction direction of incident light[8]
    Fig. 7. Diagram of diffraction direction of incident light[8]
    Results of the SpectroEye measurement for the light pillar rainbow holographic master masks
    Fig. 8. Results of the SpectroEye measurement for the light pillar rainbow holographic master masks
    Spectral power distribution of scanner’s light source
    Fig. 9. Spectral power distribution of scanner’s light source
    Schematic of scanning optical path of scanner
    Fig. 10. Schematic of scanning optical path of scanner
    Colors of different plain rainbow holographic master masks versus rotation angle. (a) Mask A; (b) mask B; (c) mask C; (d) mask D
    Fig. 11. Colors of different plain rainbow holographic master masks versus rotation angle. (a) Mask A; (b) mask B; (c) mask C; (d) mask D
    Relationship between grating constant and incident angle for plain rainbow holographic materials
    Fig. 12. Relationship between grating constant and incident angle for plain rainbow holographic materials
    Plain rainbow master maskλ1d1λ2d2
    A0.69-0.710.99±0.010.48-0.490.97±0.01
    B0.60-0.620.87±0.020.38-0.400.78±0.01
    C0.59-0.600.84±0.010.41-0.420.83±0.01
    D0.68-0.700.98±0.010.49-0.500.99±0.01
    Table 1. Grating constants corresponding to different peak wavelengthsμm
    Plain rainbow master maskd /μmColor
    0°-5°5°-40°40°-45°50°-80°85°-90°
    A (D)1.01-1.05BlueRainbowRed+GreenRainbowBlue
    B (C)0.84-0.85BlueRainbowBlue+GreenRainbowBlue
    Table 2. Scanning color informations of different plain rainbow holographic master masks
    Plain rainbow master maskd /μmDiffraction maximum wavelength /nm
    0°-5° (85°-90°)40°-45°
    A1.00406.7-484.8575.2-685.6
    B0.85345.7-412.1488.8-583.1
    C0.85345.7-412.1488.8-583.1
    D1.00406.7-484.8575.2-685.6
    Table 3. Results of diffraction maximum wavelength of different plain rainbow holographic master masks
    Waveband /nmColor sense
    380-470Blue
    470-500Cyan
    500-530Green
    530-560Yellow-Green
    560-590Yellow
    590-620Orange
    620-700Red
    Table 4. Color senses corresponding to different wavebands
    Plain rainbow master maski /(°)Grating constant /μmd(range) /μmd /μm
    0° (position)45° (position)
    Blue(380-470 nm)Yellow-Green+Yellow(530-590 nm)Blue-Green+Green(470-530 nm)
    A, D240.93-1.160.92-1.030.93-1.030.98±0.05
    290.78-0.970.77-0.86
    B, C24NaN0.82-0.920.82-0.920.87±0.05
    290.78-0.970.69-0.77
    Table 5. Calculated grating constants of plain rainbow holographic materials in directions of 0° and 45°
    Positioni /(°)d
    0.85 μm0.95 μm1.0 μm1.1 μm1.2 μm1.3 μm
    250.359¯0.4020.4230.4650.5070.549
    300.4250.4750.5000.5500.6000.650
    45°250.5080.5680.5980.6570.7170.778
    300.6010.6720.7070.7780.4240.460
    Table 6. Grating constants of plain rainbow holographic master masks at different wavelengths
    Min Huang, Yonghui Xi, Xiu Li, Chunli Guo, Ruili He. Comparison of Grating Constant Measurement Methods for Plain Rainbow Holographic Materials[J]. Acta Optica Sinica, 2019, 39(10): 1033003
    Download Citation