• Spectroscopy and Spectral Analysis
  • Vol. 40, Issue 3, 813 (2020)
ZHENG Ming, CAO Si-min, LIU Yang-yi, CAO Xiao-dan, CHEN Zhuang, YAN Shu-jun, LI Hao-yang, CHEN Jin-quan, and XU Jian-hua
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3964/j.issn.1000-0593(2020)03-0813-04 Cite this Article
    ZHENG Ming, CAO Si-min, LIU Yang-yi, CAO Xiao-dan, CHEN Zhuang, YAN Shu-jun, LI Hao-yang, CHEN Jin-quan, XU Jian-hua. Study on Characteristics of Zinc Ion Probe Based on Fluorescence Enhancement of Bilirubin[J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 813 Copy Citation Text show less

    Abstract

    Based on the fluorescence enhancement effect of Zn2+ on bilirubin (BR), this work proposes a new method for the detection of Zn2+ concentration, and a systematically investigation of BR as a Zn2+ probe by using ultraviolet-visible light absorption and steady-state fluorescence spectroscopy has been conducted. Compared with the general single-wavelength fluorescence intensity method, this new detection method eliminates the impacts of the non-target effects of factors such as concentration variation of BR and the excitation light intensity, etc., and achieves a more accurate measurement capability in Zn2+ detection. Especially, for the first time we adopt the BR fluorescence intensities ratio at the emission wavelengths 663 and 600 nm, and investigate the dependence between this ratio and the Zn2+ concentration in the range from 0 to 90 μmol·L-1. The recognition behavior of BR probe to Zn2+ indicates that the BR fluorescence intensity ratio I663 nm/I600 nm increases linearly with the Zn2+ concentration in the range of 0~20 μmol·L-1. In particular, in the range 0~10 μmol·L-1 of Zn2+ concentration, the linear correlation coefficient r is 0.999 87, which demonstrates the linear dependence, and the detection limit is 0.1 μmol·L-1. In the Zn2+ concentration range from 20 to 90 μmol·L-1, the probe BR fluorescence intensity ratio is saturated. Accordingly, there is a positive prospect of BR fluorescence in the real-time human body Zn2+ detection.
    ZHENG Ming, CAO Si-min, LIU Yang-yi, CAO Xiao-dan, CHEN Zhuang, YAN Shu-jun, LI Hao-yang, CHEN Jin-quan, XU Jian-hua. Study on Characteristics of Zinc Ion Probe Based on Fluorescence Enhancement of Bilirubin[J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 813
    Download Citation