• Opto-Electronic Engineering
  • Vol. 47, Issue 6, 190422 (2020)
Liu Juefu*, Chen Jiao, Li Kangkang, Liu Yuanyuan, and Zhu Lu
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2020.190422 Cite this Article
    Liu Juefu, Chen Jiao, Li Kangkang, Liu Yuanyuan, Zhu Lu. Broadband cross-slots fractal nano-antenna and its extraordinary optical transmission characteristics[J]. Opto-Electronic Engineering, 2020, 47(6): 190422 Copy Citation Text show less
    References

    [1] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667–669.

         Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667–669.

    [2] Bethe H A. Theory of diffraction by small holes[J]. Physical Review, 1944, 66(7–8): 163–182.

         Bethe H A. Theory of diffraction by small holes[J]. Physical Review, 1944, 66(7–8): 163–182.

    [3] He S L. The simulation and design of frequency selective sur-face with fractal pattern[D]. Wuhan: Huazhong University of Science & Technology, 2015.

         He S L. The simulation and design of frequency selective sur-face with fractal pattern[D]. Wuhan: Huazhong University of Science & Technology, 2015.

    [4] Guo T. Review on plasmonic optical fiber grating biosensors[J]. Acta Optica Sinica, 2018, 38(3): 0328006.

         Guo T. Review on plasmonic optical fiber grating biosensors[J]. Acta Optica Sinica, 2018, 38(3): 0328006.

    [5] Wang J L, Zhang B Z, Duan J P, et al. Flexible dual-stopband terahertz metamaterial filter[J]. Acta Optica Sinica, 2017, 37(10): 1016001.

         Wang J L, Zhang B Z, Duan J P, et al. Flexible dual-stopband terahertz metamaterial filter[J]. Acta Optica Sinica, 2017, 37(10): 1016001.

    [6] Qi Y P, Zhang X W, Zhou P Y, et al. Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator emb edded by cross structure[J]. Acta Physica Sinica, 2018, 67(19): 197301.

         Qi Y P, Zhang X W, Zhou P Y, et al. Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator emb edded by cross structure[J]. Acta Physica Sinica, 2018, 67(19): 197301.

    [7] Ghaemi H F, Thio T, Grupp D E, et al. Surface plasmons en-hance optical transmission through subwavelength holes[J]. Physical Review B, 1998, 58(11): 6779–6782.

         Ghaemi H F, Thio T, Grupp D E, et al. Surface plasmons en-hance optical transmission through subwavelength holes[J]. Physical Review B, 1998, 58(11): 6779–6782.

    [8] Van Der Molen K L, Koerkamp K J K, Enoch S, et al. Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory[J]. Physical Review B, 2005, 72(4): 045421.

         Van Der Molen K L, Koerkamp K J K, Enoch S, et al. Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory[J]. Physical Review B, 2005, 72(4): 045421.

    [9] Degiron A, Ebbesen T W. The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures[J]. Journal of Optics A: Pure and Applied Optics, 2005, 7(2): S90–S96.

         Degiron A, Ebbesen T W. The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures[J]. Journal of Optics A: Pure and Applied Optics, 2005, 7(2): S90–S96.

    [10] Zhang X N, Liu GQ, Liu Z Q, et al. Near-field plasmon effects in extraordinary optical transmission through periodic triangular hole arrays[J]. Optical Engineering, 2014, 53(10): 107108.

         Zhang X N, Liu GQ, Liu Z Q, et al. Near-field plasmon effects in extraordinary optical transmission through periodic triangular hole arrays[J]. Optical Engineering, 2014, 53(10): 107108.

    [11] Zhang X N, Liu G Q, Liu Z Q, et al. Effects of compound rec-tangular subwavelength hole arrays on enhancing optical transmission[J]. IEEE Photonics Journal, 2015, 7(1): 4500408.

         Zhang X N, Liu G Q, Liu Z Q, et al. Effects of compound rec-tangular subwavelength hole arrays on enhancing optical transmission[J]. IEEE Photonics Journal, 2015, 7(1): 4500408.

    [12] Zhang W, Wang Y K, Luo L N, et al. Extraordinary optical transmission of broadband through tapered multilayer slits[J]. Plasmonics, 2015, 10(3): 547–551.

         Zhang W, Wang Y K, Luo L N, et al. Extraordinary optical transmission of broadband through tapered multilayer slits[J]. Plasmonics, 2015, 10(3): 547–551.

    [13] Zhao B, Yang J J, Huang Z F. Anomalous transmission proper-ties of two integrated metallic nanoslits under plasmonic cross talking coupling[J]. Acta Photonica Sinica, 2018, 47(3): 0324005.

         Zhao B, Yang J J, Huang Z F. Anomalous transmission proper-ties of two integrated metallic nanoslits under plasmonic cross talking coupling[J]. Acta Photonica Sinica, 2018, 47(3): 0324005.

    [15] De Nicola F, Purayil N S P, Spirito D, et al. Multiband plasmonic sierpinski carpet fractal antennas[J]. ACS Photonics, 2018, 5(6): 2418–2425.

         De Nicola F, Purayil N S P, Spirito D, et al. Multiband plasmonic sierpinski carpet fractal antennas[J]. ACS Photonics, 2018, 5(6): 2418–2425.

    [16] Puente-Baliarda C, Romeu J, Pous A, et al. On the behavior of the sierpinski multiband fractal antenna[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(4): 517–524.

         Puente-Baliarda C, Romeu J, Pous A, et al. On the behavior of the sierpinski multiband fractal antenna[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(4): 517–524.

    [17] Cakmakyapan S, Cinel N A, Cakmak A O, et al. Validation of electromagnetic field enhancement in near-infrared through sierpinski fractal nanoantennas[J]. Optics Express, 2014, 22(16): 19504–19512.

         Cakmakyapan S, Cinel N A, Cakmak A O, et al. Validation of electromagnetic field enhancement in near-infrared through sierpinski fractal nanoantennas[J]. Optics Express, 2014, 22(16): 19504–19512.

    [18] Sivia J S, Kaur G, Sarao A K. A modified sierpinski carpet fractal antenna for multiband applications[J]. Wireless Personal Com-munications, 2017, 95(4): 4269–4279.

         Sivia J S, Kaur G, Sarao A K. A modified sierpinski carpet fractal antenna for multiband applications[J]. Wireless Personal Com-munications, 2017, 95(4): 4269–4279.

    [19] Johnson P B, Christy R W. Optical constants of the noble met-als[J]. Physical Review B, 1972, 6(12): 4370–4379.

         Johnson P B, Christy R W. Optical constants of the noble met-als[J]. Physical Review B, 1972, 6(12): 4370–4379.

    Liu Juefu, Chen Jiao, Li Kangkang, Liu Yuanyuan, Zhu Lu. Broadband cross-slots fractal nano-antenna and its extraordinary optical transmission characteristics[J]. Opto-Electronic Engineering, 2020, 47(6): 190422
    Download Citation