• Laser & Optoelectronics Progress
  • Vol. 57, Issue 23, 230605 (2020)
Minghua Cao*, Wei Zhang, Yue Zhang, Huiqin Wang, Xin Wu, Yicong Mao, and Zhongjiang Kang
Author Affiliations
  • School of Computer and Communication, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
  • show less
    DOI: 10.3788/LOP57.230605 Cite this Article Set citation alerts
    Minghua Cao, Wei Zhang, Yue Zhang, Huiqin Wang, Xin Wu, Yicong Mao, Zhongjiang Kang. BER Performance of 4PAM-FTN Atmospheric Optical Communication System in a Weak Turbulent Channel[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230605 Copy Citation Text show less
    References

    [1] Wang H Q, Wang X, Lynette K et al. Performance analysis of MIMO wireless optical communication system with Q-ary PPM over correlated log-normal fading channel[J]. Optics & Laser Technology, 102, 153-159(2018). http://www.sciencedirect.com/science/article/pii/s0030399217300506

    [2] Sun J, Huang P M, Yao Z S. Diversity reception technology in coherent optical communication over Gamma-Gamma atmospheric turbulence channel[J]. Acta Optica Sinica, 38, 0706002(2018).

    [3] Cao Y, Zhang X, Peng X F et al. Cascade scheme based on multiple-input multiple-output in spatial optical communication[J]. Acta Optica Sinica, 38, 0106003(2018).

    [4] Li X Y, Zhang P, Tong S F. Bit error rate performance for modulating retro-reflector free space optical communication system based on adaptive threshold under atmospheric turbulence[J]. Chinese Journal of Lasers, 45, 0606001(2018).

    [5] Muhammad S S, Brandl P, Leitgeb E et al. VHDL based FPGA implementation of 256-ary PPM for free space optical links[C]∥2007 9th International Conference on Transparent Optical Networks, July 1-5, 2007, Rome, Italy., 174-177(2007).

    [6] Huang X H, Li C Y, Lu H H et al. WDM free-space optical communication system of high-speed hybrid signals[J]. IEEE Photonics Journal, 10, 1-7(2018).

    [7] Mazo J E. Faster-than-Nyquist signaling[J]. Bell Labs Technical Journal, 54, 1451-1462(1975).

    [8] Li S Y, Ping L, Bai B M et al. Faster-than-Nyquist transmission based on multi-layer superposition[J]. Journal on Communications, 38, 86-94(2017).

    [9] Cao M H, Wu X, Yang S X et al. BER performance of faster-than-Nyquist communications under log-normal turbulence channel[J]. Optics and Precision Engineering, 28, 465-473(2020).

    [10] Kim Y J D, Bajcsy J. Binary faster than Nyquist optical transmission via non-uniform power allocation[C]∥ 2013 13th Canadian Workshop on Information Theory, June 18-21, 2013, Toronto, ON, Canada., 180-185(2013).

    [11] Ishihara T, Sugiura S. Differential faster-than-Nyquist signaling[J]. IEEE Access, 6, 4199-4206(2018).

    [12] Sugiura S. Frequency-domain equalization of faster-than-Nyquist signaling[J]. IEEE Wireless Communications Letters, 2, 555-558(2013).

    [13] Dinis R, Cunha B, Ganhao F et al. A hybrid ARQ scheme for faster than Nyquist signaling with iterative frequency-domain detection[C]∥ 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), May 11-14, 2015, Glasgow, UK., 1-5(2015).

    [14] Jana M, Medra A, Lampe L et al. Pre-equalizedfaster-than-Nyquist transmission[J]. IEEE Transactions on Communications, 65, 4406-4418(2017).

    [15] Bedeer E, Ahmed M H, Yanikomeroglu H. A very low complexity successive symbol-by-symbol sequence estimator for faster-than-Nyquist signaling[J]. IEEE Access, 5, 7414-7422(2017).

    [16] Chi N, Zhao J Q, Wang Z X. Bandwidth-efficient visible light communication system based on faster-than-Nyquist pre-coded CAP modulation[J]. Chinese Optics Letters, 15, 080601(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ170518000248B9EaHd

    [17] Liang S Y, Jiang Z H, Qiao L et al. Faster-than-Nyquist precoded CAP modulation visible light communication system based on nonlinear weighted Look-Up table predistortion[J]. IEEE Photonics Journal, 10, 7900709(2018).

    [18] Sushank C, Lin B J, Tang X et al. 40 Gbps-80 GHz PSK-MDM based Ro-FSO transmission system[J]. Optical and Quantum Electronics, 50, 1-9(2018).

    [19] Li Y Q, Zhu W Y, Qian X M. Numerical simulation of propagation performance of super-continuum laser in turbulent atmosphere[J]. Acta Photonica Sinica, 48, 1001002(2019).

    [20] Wang H Q, Yao Y, Cao M H. Pulsedelay and broadening of laser signal in sand and dust weather[J]. Acta Optica Sinica, 37, 0729001(2017).

    [21] Lü W T. Study on direct detection of PAM4 signals with FTN for optical transmission system[D]. Beijing: Beijing University of Posts and Telecommunications, 1-30(2017).

    [22] Wilson S G, Brandt-Pearce M, Cao Q L et al. Optical repetition MIMO transmission with multipulse PPM[J]. IEEE Journal on Selected Areas in Communications, 23, 1901-1910(2005).

    [24] Abaza M, Mesleh R, Mansour A et al. Performance analysis of space-shift keying over negative-exponential and log-normal FSO channels[J]. Chinese Optics Letters, 13, 051001(2015). http://www.opticsjournal.net/Articles/Abstract?aid=OJ150521000072MiPlSo

    [25] Alaka S P, Narasimhan T L, Chockalingam A. Generalized spatial modulation in indoor wireless visible light communication[C]∥ 2015 IEEE Global Communications Conference (GLOBECOM), December 6-10, 2015, San Diego, CA, USA., 1-7(2015).

    [26] Chagnon M, Morsy-Osman M, Poulin M et al. Experimental parametric study of a silicon photonic modulator enabled 112-Gb/s PAM transmission system with a DAC and ADC[J]. Journal of Lightwave Technology, 33, 1380-1387(2015).

    [27] Cao M H, Wang H Q, Yao Y et al[J]. Performance evaluation of FSO communications under sand-dust conditions International Journal of Antennas and Propagation, 2019, 1-11.

    Minghua Cao, Wei Zhang, Yue Zhang, Huiqin Wang, Xin Wu, Yicong Mao, Zhongjiang Kang. BER Performance of 4PAM-FTN Atmospheric Optical Communication System in a Weak Turbulent Channel[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230605
    Download Citation