• Chinese Journal of Lasers
  • Vol. 52, Issue 5, 0501006 (2025)
Guangjie Yao1, Jiacheng Li1, Huazhan Liu1, Chaojie Ma1..., Hao Hong1 and Kaihui Liu1,2,3,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
  • 2The International Center for Quantum Materials, Peking University, Beijing 100871, China
  • 3Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong , China
  • show less
    DOI: 10.3788/CJL241077 Cite this Article Set citation alerts
    Guangjie Yao, Jiacheng Li, Huazhan Liu, Chaojie Ma, Hao Hong, Kaihui Liu. Research Progress of Nonlinear Optical Crystals and Phase Matching Methods (Invited)[J]. Chinese Journal of Lasers, 2025, 52(5): 0501006 Copy Citation Text show less
    References

    [1] Bloembergen N[M]. Nonlinear optics(1996).

    [2] Boyd R W[M]. Nonlinear optics(2008).

    [3] Shen Y R[M]. The principles of nonlinear optics(2003).

    [4] Nikogosyan D N[M]. Nonlinear optical crystals: a complete survey(2006).

    [5] Dmitriev V G, Gurzadyan G G, Nikogosyan D N[M]. Handbook of nonlinear optical crystals(2013).

    [6] Chen C T, Wu Y C, Jiang A D et al. New nonlinear-optical crystal: LiB3O5[J]. Journal of the Optical Society of America B, 6, 616-621(1989).

    [7] Roberts D A. Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions[J]. IEEE Journal of Quantum Electronics, 28, 2057-2074(1992).

    [8] Mori Y, Kuroda I, Nakajima S et al. New nonlinear optical crystal: cesium lithium borate[J]. Applied Physics Letters, 67, 1818-1820(1995).

    [9] Lin J, Lee M H, Liu Z P et al. Mechanism for linear and nonlinear optical effects in β-BaB2O4 crystals[J]. Physical Review B, 60, 13380-13389(1999).

    [10] Chen C, Lin Z, Wang Z. The development of new borate-based UV nonlinear optical crystals[J]. Applied Physics B, 80, 1-25(2005).

    [11] Zheng Y L, Chen X F. Nonlinear wave mixing in lithium niobate thin film[J]. Advances in Physics X, 6, 1889402(2021).

    [12] Zhang M, Wang H R, Zhang L. Research progress of ultraviolet nonlinear optical crystal K3B6O10Br (invited)[J]. Laser & Optoelectronics Progress, 61, 0316002(2024).

    [13] Xu M X, Yu H H, Lu D Z et al. Research progress in nonlinear optical crystals for high-power laser (invited)[J]. Laser & Optoelectronics Progress, 61, 0116004(2024).

    [14] Pan S L, Zhang F F. Research progress of new deep ultraviolet nonlinear optical crystals (invited)[J]. Laser & Optoelectronics Progress, 61, 0116003(2024).

    [15] Wu B C, Tang D, Ye N et al. Linear and nonlinear optical properties of the KBe2BO3F2 (KBBF) crystal[J]. Optical Materials, 5, 105-109(1996).

    [16] Chen C T, Xu Z Y, Deng D Q et al. The vacuum ultraviolet phase‐matching characteristics of nonlinear optical KBe2BO3F2 crystal[J]. Applied Physics Letters, 68, 2930-2932(1996).

    [17] Maker P D, Terhune R W, Nisenoff M et al. Effects of dispersion and focusing on the production of optical harmonics[J]. Physical Review Letters, 8, 21-22(1962).

    [18] Chen C T, Sasaki T, Li R K et al[M]. Nonlinear optical borate crystals: principals and applications(2012).

    [19] Giordmaine J A. Mixing of light beams in crystals[J]. Physical Review Letters, 8, 19-20(1962).

    [20] Armstrong J A, Bloembergen N, Ducuing J et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 127, 1918-1939(1962).

    [21] Zhu S N, Zhu Y Y, Ming N B. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice[J]. Science, 278, 843-846(1997).

    [22] Guo Q B, Qi X Z, Zhang L S et al. Ultrathin quantum light source with van der Waals NbOCl2 crystal[J]. Nature, 613, 53-59(2023).

    [23] Xu X Y, Trovatello C, Mooshammer F et al. Towards compact phase-matched and waveguided nonlinear optics in atomically layered semiconductors[J]. Nature Photonics, 16, 698-706(2022).

    [24] Qi J J, Ma C J, Guo Q L et al. Stacking-controlled growth of rBN crystalline films with high nonlinear optical conversion efficiency up to 1%[J]. Advanced Materials, 36, e2303122(2024).

    [25] Ma C J, Ma C J, Liu C et al. Strong chiroptical nonlinearity in coherently stacked boron nitride nanotubes[J]. Nature Nanotechnology, 19, 1299-1305(2024).

    [26] Qin B, Ma C J, Guo Q L et al. Interfacial epitaxy of multilayer rhombohedral transition-metal dichalcogenide single crystals[J]. Science, 385, 99-104(2024).

    [27] Hong H, Huang C, Ma C J et al. Twist phase matching in two-dimensional materials[J]. Physical Review Letters, 131, 233801(2023).

    [28] Xie Z D, Lv X J, Zhu S N. Sub-coherence-length nonlinear optical manipulation via twist phase matching[J]. Science Bulletin, 69, 1170-1172(2024).

    [29] Kato K. Second-harmonic generation to 2048 Å in β-Ba2O4[J]. IEEE Journal of Quantum Electronics, 22, 1013-1014(1986).

    [30] Dunning F B, Stickel R E, Jr. Sum frequency mixing in potassium pentaborate as a source of tunable coherent radiation at wavelengths below 217 nm[J]. Applied Optics, 15, 3131-3134(1976).

    [31] Liu Q, Yan X P, Fu X et al. High power all-solid-state fourth harmonic generation of 266 nm at the pulse repetition rate of 100 kHz[J]. Laser Physics Letters, 6, 203-206(2009).

    [32] Délen X, Deyra L, Benoit A et al. Hybrid master oscillator power amplifier high-power narrow-linewidth nanosecond laser source at 257 nm[J]. Optics Letters, 38, 995-997(2013).

    [33] Yajima T, Takeuchi N. Spectral properties and tunability of far-infrared difference-frequency radiation produced by picosecond laser pulses[J]. Japanese Journal of Applied Physics, 10, 907(1971).

    [34] Boyd G D, Bridges T J, Patel C K N et al. Phase-matched submillimeter wave generation by difference‐frequency mixing in ZnGeP2[J]. Applied Physics Letters, 21, 553-555(1972).

    [35] Shi W, Ding Y J, Fernelius N et al. Efficient, tunable, and coherent 0.18‒5.27-THz source based on GaSe crystal[J]. Optics Letters, 27, 1454-1456(2002).

    [36] Antoine P, L’Huillier A, Lewenstein M. Attosecond pulse trains using high-order harmonics[J]. Physical Review Letters, 77, 1234-1237(1996).

    [37] Paul P M, Toma E S, Breger P et al. Observation of a train of attosecond pulses from high harmonic generation[J]. Science, 292, 1689-1692(2001).

    [38] Hentschel M, Kienberger R, Spielmann C et al. Attosecond metrology[J]. Nature, 414, 509-513(2001).

    [39] Agostini P, di Mauro L F. The physics of attosecond light pulses[J]. Reports on Progress in Physics, 67, 813-855(2004).

    [40] Krausz F, Ivanov M. Attosecond physics[J]. Reviews of Modern Physics, 81, 163-234(2009).

    [41] Kwiat P G, Mattle K, Weinfurter H et al. New high-intensity source of polarization-entangled photon pairs[J]. Physical Review Letters, 75, 4337-4341(1995).

    [42] Wong F N C, Shapiro J H, Kim T. Efficient generation of polarization-entangled photons in a nonlinear crystal[J]. Laser Physics, 16, 1517-1524(2006).

    [43] Barz S, Cronenberg G, Zeilinger A et al. Heralded generation of entangled photon pairs[J]. Nature Photonics, 4, 553-556(2010).

    [44] Ma X F, Fung C H F, Lo H K. Quantum key distribution with entangled photon sources[J]. Physical Review A, 76, 012307(2007).

    [45] Kurtz S K, Robinson F N H. A physical model of the electro‐optic effect[J]. Applied Physics Letters, 10, 62-65(1967).

    [46] Kaminow I P, Johnston W D. Quantitative determination of sources of the electro-optic effect in LiNbO3 and LiTaO3[J]. Physical Review, 160, 519-522(1967).

    [47] Jacobsen R S, Andersen K N, Borel P I et al. Strained silicon as a new electro-optic material[J]. Nature, 441, 199-202(2006).

    [48] Jing J T, Zhang J, Yan Y et al. Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables[J]. Physical Review Letters, 90, 167903(2003).

    [49] Giordmaine J A, Miller R C. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies[J]. Physical Review Letters, 14, 973-976(1965).

    [50] Baumgartner R A, Byer R L. Optical parametric amplification[J]. IEEE Journal of Quantum Electronics, 15, 432-444(1979).

    [51] Cerullo G, de Silvestri S. Ultrafast optical parametric amplifiers[J]. Review of Scientific Instruments, 74, 1-18(2003).

    [52] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Reviews of Modern Physics, 78, 1135-1184(2006).

    [53] Genty G, Coen S, Dudley J M. Fiber supercontinuum sources (invited)[J]. Journal of the Optical Society of America B, 24, 1771-1785(2007).

    [54] Silva F, Austin D R, Thai A et al. Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal[J]. Nature Communications, 3, 807(2012).

    [55] Jones D J, Diddams S A, Ranka J K et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 288, 635-640(2000).

    [56] Wang C Y, Herr T, Del’Haye P et al. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators[J]. Nature Communications, 4, 1345(2013).

    [57] Guo H R, Herkommer C, Billat A et al. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides[J]. Nature Photonics, 12, 330-335(2018).

    [58] Diddams S A, Vahala K, Udem T. Optical frequency combs: coherently uniting the electromagnetic spectrum[J]. Science, 369, eaay3676(2020).

    [59] Lin J T, Yao N, Hao Z Z et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator[J]. Physical Review Letters, 122, 173903(2019).

    [60] Wang C L, Fang Z W, Yi A L et al. High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonics[J]. Light: Science & Applications, 10, 139(2021).

    [61] Xu Z Y, Zhang S J, Zhou X J et al. Advances in deep ultraviolet laser based high-resolution photoemission spectroscopy[J]. Frontiers of Information Technology & Electronic Engineering, 20, 885-913(2019).

    [62] Mutailipu M, Pan S L. Emergent deep-ultraviolet nonlinear optical candidates[J]. Angewandte Chemie (International Edition), 59, 20302-20317(2020).

    [63] Mutailipu M, Han J, Li Z et al. Achieving the full-wavelength phase matching for efficient nonlinear optical frequency conversion in C(NH2)3BF4[J]. Nature Photonics, 17, 694-701(2023).

    [64] Berger V. Nonlinear photonic crystals[J]. Physical Review Letters, 81, 4136-4139(1998).

    [65] Yao J Q. Development of nonlinear optical frequency conversion and quasi-phase matching technology[J]. Journal of Synthetic Crystals, 31, 201-207(2002).

    [66] Chen B Q, Zhang C, Hu C Y et al. High-efficiency broadband high-harmonic generation from a single quasi-phase matching nonlinear crystal[J]. Physical Review Letters, 115, 083902(2015).

    [67] Shao M C, Liang F, Yu H H et al. Pushing periodic-disorder-induced phase matching into the deep-ultraviolet spectral region: theory and demonstration[J]. Light: Science & Applications, 9, 45(2020).

    [68] Yu S L, Wu X Q, Wang Y P et al. 2D materials for optical modulation: challenges and opportunities[J]. Advanced Materials, 29, 1606128(2017).

    [69] Ma Q J, Ren G H, Xu K et al. Tunable optical properties of 2D materials and their applications[J]. Advanced Optical Materials, 9, 2001313(2021).

    [70] Autere A, Jussila H, Dai Y Y et al. Nonlinear optics with 2D layered materials[J]. Advanced Materials, 30, 1705963(2018).

    [71] You J W, Bongu S R, Bao Q et al. Nonlinear optical properties and applications of 2D materials: theoretical and experimental aspects[J]. Nanophotonics, 8, 63-97(2018).

    [72] Yin P, Jiang X T, Huang R et al. 2D materials for nonlinear photonics and electro-optical applications[J]. Advanced Materials Interfaces, 8, 2100367(2021).

    [73] Khan A R, Zhang L L, Ishfaq K et al. Optical harmonic generation in 2D materials[J]. Advanced Functional Materials, 32, 2105259(2022).

    [74] Ullah K, Meng Y F, Shi Y et al. Harmonic generation in low-dimensional materials[J]. Advanced Optical Materials, 10, 2101860(2022).

    [75] Yao F R, Yu W T, Liu C et al. Complete structural characterization of single carbon nanotubes by Rayleigh scattering circular dichroism[J]. Nature Nanotechnology, 16, 1073-1078(2021).

    [76] Leven I, Guerra R, Vanossi A et al. Multiwalled nanotube faceting unravelled[J]. Nature Nanotechnology, 11, 1082-1086(2016).

    [77] Xia H M, Chen X Y, Luo S et al. Probing the chiral domains and excitonic states in individual WS2 tubes by second-harmonic generation[J]. Nano Letters, 21, 4937-4943(2021).

    Guangjie Yao, Jiacheng Li, Huazhan Liu, Chaojie Ma, Hao Hong, Kaihui Liu. Research Progress of Nonlinear Optical Crystals and Phase Matching Methods (Invited)[J]. Chinese Journal of Lasers, 2025, 52(5): 0501006
    Download Citation