Guangjie Yao, Jiacheng Li, Huazhan Liu, Chaojie Ma, Hao Hong, Kaihui Liu. Research Progress of Nonlinear Optical Crystals and Phase Matching Methods (Invited)[J]. Chinese Journal of Lasers, 2025, 52(5): 0501006

Search by keywords or author
- Chinese Journal of Lasers
- Vol. 52, Issue 5, 0501006 (2025)

Fig. 1. Nonlinear processes and applications of optical crystals

Fig. 2. Phase mismatch. (a) Energy conservation in SHG; (b) momentum mismatch in SHG; (c) illustration of intensity variation of SHG during it propagates through an optical crystal

Fig. 3. Birefringent phase matching. (a) Refractive index of o- and e-wave as a function of wavelength; (b) birefringent phase matching incidence conditions; (c) momentum conservation in birefringent phase matching; (d) refractive index matching through birefringent effect
![Phase matching loss in birefringent phase matching[63]. (a) Minimum phase matching wavelength and cut-off wavelength of different optical crystals; (b) phase matching loss of different optical crystals](/Images/icon/loading.gif)
Fig. 4. Phase matching loss in birefringent phase matching[63]. (a) Minimum phase matching wavelength and cut-off wavelength of different optical crystals; (b) phase matching loss of different optical crystals

Fig. 5. Quasi-phase matching. (a) Illustration of quasi-phase matching; (b) momentum conservation; (c) SHG intensity as a function of distance in birefringent phase matching, quasi-phase matching and phase mismatching
![Special quasi-phase matching. (a) Quasi-periodic optical superlattice for THG phase matching[21]; (b) THG under 1570 nm excitation[21]; (c) chirped periodic poled lithium niobate[66]; (d) quasi-phase matching from SHG to 8th harmonic generation[66]; (e) illustration of the additional periodic phase (APP) matching[67]; (f) effect of APP matching[67]](/Images/icon/loading.gif)
Fig. 6. Special quasi-phase matching. (a) Quasi-periodic optical superlattice for THG phase matching[21]; (b) THG under 1570 nm excitation[21]; (c) chirped periodic poled lithium niobate[66]; (d) quasi-phase matching from SHG to 8th harmonic generation[66]; (e) illustration of the additional periodic phase (APP) matching[67]; (f) effect of APP matching[67]
![Two-dimensional optical crystals. (a) Crystal structure of NbOCl2[22]; (b) nonlinear coefficient of NbOCl2 as a function of layer number[22]; (c) 3R-MoS2 for SHG[23]; (d) thickness-dependent SHG enhancement[23]; (e) rBN optical crystal[24]; (f) conversion efficiency of different two-dimensional optical crystal materials[24]](/Images/icon/loading.gif)
Fig. 7. Two-dimensional optical crystals. (a) Crystal structure of NbOCl2[22]; (b) nonlinear coefficient of NbOCl2 as a function of layer number[22]; (c) 3R-MoS2 for SHG[23]; (d) thickness-dependent SHG enhancement[23]; (e) rBN optical crystal[24]; (f) conversion efficiency of different two-dimensional optical crystal materials[24]
![Twist phase matching. (a) Schematic of twist phase matching[27]; (b) illustration of the physical picture of the twist phase matching[27]; (c) effect of twist phase matching[27]; (d) multiwalled BNNTs with coherent stacking[25]; (e) chiral SHG[25]](/Images/icon/loading.gif)
Fig. 8. Twist phase matching. (a) Schematic of twist phase matching[27]; (b) illustration of the physical picture of the twist phase matching[27]; (c) effect of twist phase matching[27]; (d) multiwalled BNNTs with coherent stacking[25]; (e) chiral SHG[25]
|
Table 1. Features of different kinds of phase matching methods

Set citation alerts for the article
Please enter your email address