• Acta Optica Sinica
  • Vol. 41, Issue 8, 0823015 (2021)
Jianfeng Chen1、2, Wenyao Liang1, and Zhiyuan Li1、*
Author Affiliations
  • 1School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510641, China
  • 2Guangdong Full-Spectra Laser Technology Co., Ltd., Dongguan, Guangdong 523808, China
  • show less
    DOI: 10.3788/AOS202141.0823015 Cite this Article Set citation alerts
    Jianfeng Chen, Wenyao Liang, Zhiyuan Li. Progress of Topological Photonic State in Magneto-Optical Photonic Crystal[J]. Acta Optica Sinica, 2021, 41(8): 0823015 Copy Citation Text show less
    References

    [1] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 58, 2059-2062(1987).

    [2] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 58, 2486-2489(1987).

    [3] Hasan M Z, Kane C L. Colloquium: topological insulators[J]. Reviews of Modern Physics, 82, 3045-3067(2010).

    [4] Khanikaev A B, Mousavi S H, Tse W K et al. Photonic topological insulators[J]. Nature Materials, 12, 233-239(2013).

    [5] Lu L, Joannopoulos J D. Solja i M. Topological photonics[J]. Nature Photonics, 8, 821-829(2014).

    [6] Lu L, Joannopoulos J D. Solja i M. Topological states in photonic systems[J]. Nature Physics, 12, 626-629(2016).

    [7] Khanikaev A B, Shvets G. Two-dimensional topological photonics[J]. Nature Photonics, 11, 763-773(2017).

    [8] Xie B Y, Wang H F, Zhu X Y et al. Photonics meets topology[J]. Optics Express, 26, 24531-24550(2018).

    [9] Ozawa T, Price H M, Amo A et al. Topological photonics[J]. Reviews of Modern Physics, 91, 015006(2019).

    [10] Wang H F, Gupta S K, Xie B Y et al. Topological photonic crystals: a review[J]. Frontiers of Optoelectronics, 13, 50-72(2020).

    [11] Kim M, Jacob Z, Rho J. Recent advances in 2D, 3D and higher-order topological photonics[J]. Light, Science & Applications, 9, 130(2020).

    [12] Haldane F D, Raghu S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry[J]. Physical Review Letters, 100, 013904(2008).

    [13] Raghu S. Haldane F D M. Analogs of quantum-hall-effect edge states in photonic crystals[J]. Physical Review A, 78, 033834(2008).

    [14] Wang Z, Chong Y D, Joannopoulos J D et al. Reflection-free one-way edge modes in a gyromagnetic photonic crystal[J]. Physical Review Letters, 100, 013905(2008).

    [15] Wang Z, Chong Y, Joannopoulos J D et al. Observation of unidirectional backscattering-immune topological electromagnetic states[J]. Nature, 461, 772-775(2009).

    [16] Fu J X, Liu R J, Li Z Y. Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces[J]. Applied Physics Letters, 97, 041112(2010).

    [17] Poo Y, Wu R X, Lin Z F et al. Experimental realization of self-guiding unidirectional electromagnetic edge states[J]. Physical Review Letters, 106, 093903(2011).

    [18] Hafezi M, Demler E A, Lukin M D et al. Robust optical delay lines with topological protection[J]. Nature Physics, 7, 907-912(2011). http://www.nature.com/articles/nphys2063/

    [19] Gao F, Gao Z, Shi X et al. Probing topological protection using a designer surface plasmon structure[J]. Nature Communications, 7, 11619(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC4876474/

    [20] Chen W J, Jiang S J, Chen X D et al. Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide[J]. Nature Communications, 5, 5782(2014).

    [21] He C, Sun X C, Liu X P et al. Photonic topological insulator with broken time-reversal symmetry[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 4924-4928(2016).

    [22] Shvets G B, Khanikaev A B, Ma T et al. Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in meta-waveguides[J]. Proceedings of SPIE, 9544, 95441G(2015).

    [23] Chen X D, Deng W M, Zhao F L et al. Accidental double Dirac cones and robust edge states in topological anisotropic photonic crystals[J]. Laser & Photonics Reviews, 12, 1800073(2018).

    [24] Wu L H, Hu X. Scheme for achieving a topological photonic crystal by using dielectric material[J]. Physical Review Letters, 114, 223901(2015).

    [25] Dong J W, Chen X D, Zhu H Y et al. Valley photonic crystals for control of spin and topology[J]. Nature Materials, 16, 298-302(2017).

    [26] He X T, Liang E T, Yuan J J et al. A silicon-on-insulator slab for topological valley transport[J]. Nature Communications, 10, 872(2019).

    [27] Lu J C, Chen X D, Deng W M et al. One-way propagation of bulk states and robust edge states in photonic crystals with broken inversion and time-reversal symmetries[J]. Journal of Optics, 20, 075103(2018).

    [28] Chen X D, Shi F L, Liu H et al. Tunable electromagnetic flow control in valley photonic crystal waveguides[J]. Physical Review Applied, 10, 044002(2018).

    [29] Chen X D, Zhao F L, Chen M et al. Valley-contrasting physics in all-dielectric photonic crystals: orbital angular momentum and topological propagation[J]. Physical Review B, 96, 020202(2017).

    [30] Gao Z, Yang Z J, Gao F et al. Valley surface-wave photonic crystal and its bulk/edge transport[J]. Physical Review B, 96, 201402(2017).

    [31] Chen X D, Deng W M, Lu J C et al. Valley-controlled propagation of pseudospin states in bulk metacrystal waveguides[J]. Physical Review B, 97, 184201(2018).

    [32] Tang G J, Chen X D, Dong J W. Valley photonic crystals and topological propagation of light[J]. Physics, 48, 376-384(2019).

    [33] Skirlo S A, Lu L. Solja i M. Multimode one-way waveguides of large Chern numbers[J]. Physical Review Letters, 113, 113904(2014). http://www.ncbi.nlm.nih.gov/pubmed/25259982

    [34] Skirlo S A, Lu L, Igarashi Y et al. Experimental observation of large Chern numbers in photonic crystals[J]. Physical Review Letters, 115, 253901(2015). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.253901

    [35] Lu L, Fu L, Joannopoulos J D et al. Weyl points and line nodes in gyroid photonic crystals[J]. Nature Photonics, 7, 294-299(2013).

    [36] Lu L, Wang Z, Ye D et al. Experimental observation of Weyl points[J]. Science, 349, 622-624(2015). http://arxiv.org/abs/1502.03438

    [37] Xiao M, Lin Q, Fan S. Hyperbolic Weyl point in reciprocal chiral metamaterials[J]. Physical Review Letters, 117, 057401(2016). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.057401

    [38] Chen W J, Xiao M, Chan C T. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states[J]. Nature Communications, 7, 13038(2016).

    [39] Chen X D, Deng W M, Shi F L et al. Direct observation of corner states in second-order topological photonic crystal slabs[J]. Physical Review Letters, 122, 233902(2019).

    [40] Xie B Y, Su G X, Wang H F et al. Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals[J]. Physical Review Letters, 122, 233903(2019). http://www.ncbi.nlm.nih.gov/pubmed/31298912

    [41] Xie B Y, Su G X, Wang H F et al. Higher-order quantum spin hall effect in a photonic crystal[J]. Nature Communications, 11, 3768(2020).

    [42] Xie X, Zhang W X, He X W et al. Topological nanophotonics: cavity quantum electrodynamics with second-order topological corner state[J]. Laser & Photonics Reviews, 14, 1900425(2020).

    [43] Li M Y, Zhirihin D, Gorlach M et al. Higher-order topological states in photonic kagome crystals with long-range interactions[J]. Nature Photonics, 14, 89-94(2020). http://www.nature.com/articles/s41566-019-0561-9

    [44] Yang Y, Gao Z, Xue H et al. Realization of a three-dimensional photonic topological insulator[J]. Nature, 565, 622-626(2019).

    [45] Bahari B, Ndao A, Vallini F et al. Nonreciprocal lasing in topological cavities of arbitrary geometries[J]. Science, 358, 636-640(2017).

    [46] Harari G, Bandres M A, Lumer Y et al. 359(6381): eaar4003(2018).

    [47] Bandres M A, Wittek S, Harari G et al. 359(6381): eaar4005(2018).

    [48] Shao Z K, Chen H Z, Wang S et al. A high-performance topological bulk laser based on band-inversion-induced reflection[J]. Nature Nanotechnology, 15, 67-72(2020).

    [49] Zeng Y, Chattopadhyay U, Zhu B et al. Electrically pumped topological laser with valley edge modes[J]. Nature, 578, 246-250(2020).

    [50] Gong Y K, Wong S, Bennett A J et al. Topological insulator laser using valley-hall photonic crystals[J]. ACS Photonics, 7, 2089-2097(2020).

    [51] Yang Y, Poo Y, Wu R X et al. Experimental demonstration of one-way slow wave in waveguide involving gyromagnetic photonic crystals[J]. Applied Physics Letters, 102, 231113(2013).

    [52] Fang Y T, Chen Z. Dispersionless and slow unidirectional air waveguide[J]. Photonic Network Communications, 35, 231-236(2018).

    [53] Chen J F, Liang W Y, Li Z Y. Strong coupling of topological edge states enabling group-dispersionless slow light in magneto-optical photonic crystals[J]. Physical Review B, 99, 014103(2019).

    [54] Chen J F, Liang W Y, Li Z Y. Switchable slow light rainbow trapping and releasing in strongly coupling topological photonic systems[J]. Photonics Research, 7, 1075-1080(2019).

    [55] Chen J F, Liang W Y, Li Z Y. Broadband dispersionless topological slow light[J]. Optics Letters, 45, 4964-4967(2020).

    [56] Chang Y H, Robles R A R, Silalahi V C et al. -04-16)[2020-08-27], org/abs/2004, 09282(2020). https://arxiv.

    [57] Liu S Y, Lu W L, Lin Z F et al. Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials[J]. Applied Physics Letters, 97, 201113(2010).

    [58] He C, Chen X L, Lu M H et al. Tunable one-way cross-waveguide splitter based on gyromagnetic photonic crystal[J]. Applied Physics Letters, 96, 111111(2010).

    [59] Wang Z Y, Yu Z H, Zheng X D et al. 1×2 beam splitter with high efficiency based on nonreciprocal photonic crystal waveguide[J]. Journal of Electromagnetic Waves and Applications, 26, 1476-1482(2012).

    [60] Leykam D, Chong Y D. Edge solitons in nonlinear-photonic topological insulators[J]. Physical Review Letters, 117, 143901(2016).

    [61] Smirnova D, Kruk S, Leykam D et al. Third-harmonic generation in photonic topological metasurfaces[J]. Physical Review Letters, 123, 103901(2019).

    [62] Zangeneh-Nejad F, Fleury R. Nonlinear second-order topological insulators[J]. Physical Review Letters, 123, 053902(2019).

    [63] Dobrykh D A, Yulin A V, Slobozhanyuk A P et al. Nonlinear control of electromagnetic topological edge states[J]. Physical Review Letters, 121, 163901(2018).

    [64] Kruk S, Slobozhanyuk A, Denkova D et al. Edge states and topological phase transitions in chains of dielectric nanoparticles[J]. Small, 13, 1603190(2017).

    [65] Kruk S, Poddubny A, Smirnova D et al. Nonlinear light generation in topological nanostructures[J]. Nature Nanotechnology, 14, 126-130(2019).

    [66] Smirnova D, Leykam D, Chong Y D et al. Nonlinear topological photonics[J]. Applied Physics Reviews, 7, 021306(2020).

    [67] Wang H F, Xie B Y, Zhan P et al. Research progress of topological photonics[J]. Acta Physica Sinica, 68, 224206(2019).

    [68] Fukui T, Hatsugai Y, Suzuki H. Chern numbers in discretized Brillouin zone: efficient method of computing (spin) hall conductances[J]. Journal of the Physical Society of Japan, 74, 1674-1677(2005).

    [69] Ao X Y, Lin Z F, Chan C T. One-way edge mode in a magneto-optical honeycomb photonic crystal[J]. Physical Review B, 80, 033105(2009).

    [70] Liu K X, Shen L F, He S L. One-way edge mode in a gyromagnetic photonic crystal slab[J]. Optics Letters, 37, 4110-4112(2012).

    [71] Lian J, Fu J X, Gan L et al. Robust and disorder-immune magnetically tunable one-way waveguides in a gyromagnetic photonic crystal[J]. Physical Review B, 85, 125108(2012).

    [72] Mansha S, Chong Y D. Robust edge states in amorphous gyromagnetic photonic lattices[J]. Physical Review B, 96, 121405(2017).

    [73] Yang B, Zhang H F, Wu T et al. Topological states in amorphous magnetic photonic lattices[J]. Physical Review B, 99, 045307(2019).

    [74] Zhou P H, Liu G G, Ren X et al. Photonic amorphous topological insulator[J]. Light: Science & Applications, 9, 133(2020).

    [75] Chen J F, Liang W Y, Li Z Y. Revealing photonic Lorentz force as the microscopic origin of topological photonic states[J]. Nanophotonics, 9, 3217-3226(2020).

    [76] Ochiai T, Onoda M. Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states[J]. Physical Review B, 80, 155103(2009).

    [77] Ochiai T. Photonic realization of the (2+1)-dimensional parity anomaly[J]. Physical Review B, 86, 075152(2012).

    [78] Liu G G, Zhou P H, Yang Y H et al. Observation of an unpaired photonic Dirac point[J]. Nature Communications, 11, 1873(2020).

    [79] Chen J F, Liang W Y, Li Z Y. Antichiral one-way edge states in a gyromagnetic photonic crystal[J]. Physical Review B, 101, 214102(2020).

    [80] Zhou P H, Liu G G, Yang Y H et al. Observation of photonic antichiral edge states[J]. Physical Review Letters, 125, 263603(2020).

    [81] Li Z, Wu R X, Li Q B et al. Observation of broadband unidirectional transmission by fusing the one-way edge states of gyromagnetic photonic crystals[J]. Optics Express, 23, 9658-9663(2015).

    [82] Kong W, Cai Q, Lin Z L et al. Continual mode transformation in a unidirectional compound waveguide[J]. Optica Applicata, 48, 87-94(2018).

    [83] Zhu H B, Jiang C. Extraordinary coupling into one-way magneto-optical photonic crystal waveguide[J]. Journal of Lightwave Technology, 29, 708-713(2011).

    [84] Fu J X, Lian J, Liu R J et al. Unidirectional channel-drop filter by one-way gyromagnetic photonic crystal waveguides[J]. Applied Physics Letters, 98, 211104(2011).

    [85] Zhang Q Y, Li X. One-way rotating photonic crystal ring resonator with high quality factor[J]. IEEE Photonics Journal, 10, 1-10(2018).

    [86] Shi A Q, Ge R, Liu J J. Side-coupled liquid sensor and its array with magneto-optical photonic crystal[J]. Journal of the Optical Society of America A, 37, 1244-1248(2020).

    [87] Li F F, Wang H X, Xiong Z et al. Topological light-trapping on a dislocation[J]. Nature Communications, 9, 2462(2018).

    [88] Lu L, Gao H Z, Wang Z. Topological one-way fiber of second Chern number[J]. Nature Communications, 9, 5384(2018).

    [89] Tong W W, Wang J F, Wang J et al. Magnetically tunable unidirectional waveguide based on magnetic photonic crystals[J]. Applied Physics Letters, 109, 053502(2016).

    [90] Shen J, Liu S Y, Zhang H W et al. Robust and tunable one-way magnetic surface plasmon waveguide: an experimental demonstration[J]. Plasmonics, 7, 287-291(2012).

    [91] Xu B G, Zhang D G, Zeng X R et al. Wideband Y-type circulator based on magneto photonic crystals and triangular ferrites[J]. IEEE Photonics Technology Letters, 31, 743-746(2019).

    [92] Wang Y, Zhang D G, Xu B G et al. Four ports double Y-shaped ultra-wideband magneto-photonic crystals circulator for 5G communication system[J]. IEEE Access, 7, 120463-120474(2019).

    Jianfeng Chen, Wenyao Liang, Zhiyuan Li. Progress of Topological Photonic State in Magneto-Optical Photonic Crystal[J]. Acta Optica Sinica, 2021, 41(8): 0823015
    Download Citation