• Journal of Inorganic Materials
  • Vol. 37, Issue 1, 29 (2022)
Lina GUO*, Xuebing HE, Lin LYU, Dan WU, and Hong YUAN
Author Affiliations
  • Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
  • show less
    DOI: 10.15541/jim20210547 Cite this Article
    Lina GUO, Xuebing HE, Lin LYU, Dan WU, Hong YUAN. Modulation of CuO Surface Properties for Selective Electrocatalytic Reduction of CO2 to HCOOH[J]. Journal of Inorganic Materials, 2022, 37(1): 29 Copy Citation Text show less
    References

    [1] A VASILEFF, Z YAO, Q SHI Z. Carbon solving carbon's problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Advanced Energy Materials, 7, 724-761(2017).

    [2] PETERS, GLEN, ANDERSON et al. The trouble with negative emissions. Science, 354, 182-183(2016). https://www.science.org/doi/10.1126/science.aah4567

    [3] S ZHANG, S ZHAO, D QU et al. Electrochemical reduction of CO2 toward C2 valuables on Cu@Ag core-shell tandem catalyst with tunable shell thickness. Small, 2102293(2021).

    [4] K XU, S NING, H CHEN et al. Plum pudding-like electrocatalyst of N-doped SnOx@Sn loaded on carbon matrix to construct photovoltaic CO2 reduction system with solar-to-fuel efficiency of 11.3%. Solar RRL, 4, 2000116(2020). https://onlinelibrary.wiley.com/toc/2367198x/4/7

    [5] Y QI, L SONG, S OUYANG et al. Photoinduced defect engineering: enhanced photothermal catalytic performance of 2D black In2O(3-x) nanosheets with bifunctional oxygen vacancies. Advanced Materials, 32, 1903915(2020). https://onlinelibrary.wiley.com/toc/15214095/32/6

    [6] R LI, Y LI, Z LI et al. A metal-segregation approach to generate CoMn alloy for enhanced photothermal conversion of syngas to light olefins. Solar RRL, 5, 2000488(2020). https://onlinelibrary.wiley.com/toc/2367198x/5/2

    [7] C ZHANG, C CAO, Y ZHANG et al. Unraveling the role of zinc on bimetallic Fe5C2-ZnO catalysts for highly selective carbon dioxide hydrogenation to high carbon α-olefins. ACS Catalysis, 11, 2121-2133(2021). https://pubs.acs.org/doi/10.1021/acscatal.0c04627

    [8] A PADILLA M, Q LU, A BATURINA O. CO2 electroreduction to hydrocarbons on carbon-supported Cu nanoparticles. ACS catalysis, 4, 3682-3695(2014). https://pubs.acs.org/doi/10.1021/cs500537y

    [9] X DUAN, J XU, Z WEI et al. Metal-free carbon materials for CO2 electrochemical reduction. Advanced Materials, 29, 1701784(2017). https://onlinelibrary.wiley.com/toc/15214095/29/41

    [10] S JIN, Z HAO, K ZHANG et al. Advances and challenges for electrochemical reduction of CO2 to CO: from fundamental to industrialization. Angewandte Chemie International Edition, 60, 2-24(2021). https://onlinelibrary.wiley.com/toc/15213773/60/1

    [11] J GU, S HSU C, L BAI et al. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science, 364, 1091-1094(2019). https://www.science.org/doi/10.1126/science.aaw7515

    [12] G LIU, Z LI, J SHI et al. Black reduced porous SnO2 nanosheets for CO2 electroreduction with high formate selectivity and low overpotential. Applied Catalysis B: Environmental, 260, 118-134(2019).

    [13] L LIN, T LIU, J XIAO et al. Enhancing CO2 electroreduction to methane with cobalt phthalocyanine and zinc-nitrogen-carbon tandem catalyst. Angewandte Chemie, 59, 22408-22413(2020).

    [14] D YANG, Q ZHU, C CHEN et al. Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nature Communications, 10, 1-9(2019). https://doi.org/10.1038/s41467-018-07882-8

    [15] T DINH C, T BURDYNY, M KIBRIA et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science, 360, 783-787(2018). https://www.science.org/doi/10.1126/science.aas9100

    [16] D ZANG, Q LI, G DAI et al. Interface engineering of Mo8/Cu heterostructures toward highly selective electrochemical reduction of carbon dioxide into acetate. Applied Catalysis B: Environmental, 281, 119426(2020). https://linkinghub.elsevier.com/retrieve/pii/S0926337320308419

    [17] X LV, L SHANG, S ZHOU et al. Electron-deficient Cu sites on Cu3Ag1 catalyst promoting CO2 electroreduction to alcohols. Advanced Energy Materials, 10, 2001987(2020). https://onlinelibrary.wiley.com/toc/16146840/10/37

    [18] X ZU, X LI, L WEI et al. Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Snδ+ sites. Advanced Materials, 31, 1808135(2019). https://onlinelibrary.wiley.com/toc/15214095/31/15

    [19] Y SHI, Y JI, J LONG et al. Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate. Nature Communications, 11, 3415(2020). https://doi.org/10.1038/s41467-020-17120-9

    [20] A ZHANG, Y LIANG, H LI et al. In-situ surface reconstruction of InN nanosheets for efficient CO2 electroreduction into formate. Nano Letters, 20, 8229-8235(2020). https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03345

    [21] J SUN, W ZHENG, S LYU et al. Bi/Bi2O3 nanoparticles supported on N-doped reduced graphene oxide for highly efficient CO2 electroreduction to formate. Chinese Chemical Letters, 31, 8229-8235.

    [22] S NITOPI, E BERTHEUSSEN, B SCOTT S et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chemical Reviews, 119, 7610-7672(2019). https://pubs.acs.org/doi/10.1021/acs.chemrev.8b00705

    [23] L LV, X HE, J WANG et al. Charge localization to optimize reactant adsorption on KCu7S4/CuO interfacial structure toward selective CO2 electroreduction. Applied Catalysis B: Environmental, 298, 120531(2021). https://linkinghub.elsevier.com/retrieve/pii/S0926337321006573

    [24] H XIE, T WANG, J LIANG et al. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today, 21, 41-54(2018). https://linkinghub.elsevier.com/retrieve/pii/S174801321830001X

    [25] X WANG, Z WANG, T ZHUANG T et al. Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites. Nature Communications, 10, 5186(2019). https://doi.org/10.1038/s41467-019-13190-6

    [26] M MA, K DJANASHVILI, A SMITH W. Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires. Physical Chemistry Chemical Physics, 17, 20861-20867(2015). http://xlink.rsc.org/?DOI=C5CP03559G

    [27] G LIU, Z LI, J SHI et al. Black reduced porous SnO2 nanosheets for CO2 electroreduction with high formate selectivity and low overpotential. Applied Catalysis B: Environmental, 260, 118134(2019). https://linkinghub.elsevier.com/retrieve/pii/S0926337319308811

    [28] C CHOU T, C CHANG C, L YU H et al. Controlling the oxidation state of Cu electrode and reaction intermediates for electrochemical CO2 reduction to ethylene. Journal of the American Chemical Society, 142, 2857-2867(2020). https://pubs.acs.org/doi/10.1021/jacs.9b11126

    [29] R DAIYAN, H SAPUTERA W, Q ZHANG et al. 3D heterostructured copper electrode for conversion of carbon dioxide to alcohols at low overpotentials. Advanced Sustainable Systems, 3, 1800064(2019). https://onlinelibrary.wiley.com/toc/23667486/3/1

    Lina GUO, Xuebing HE, Lin LYU, Dan WU, Hong YUAN. Modulation of CuO Surface Properties for Selective Electrocatalytic Reduction of CO2 to HCOOH[J]. Journal of Inorganic Materials, 2022, 37(1): 29
    Download Citation