• Laser & Optoelectronics Progress
  • Vol. 56, Issue 6, 060002 (2019)
Lianni Xie1、*, Lei Cao2, Lu Zhang3, and Yukui Yu4
Author Affiliations
  • 1 Heilongjiang Meteorology Data Center, Harbin, Heilongjiang 150030, China
  • 2 Harbin Meteorological Station, Harbin, Heilongjiang 150028, China
  • 3 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, Shaanxi 710071, China
  • 4 College of Automation, Harbin Engineering University, Harbin, Heilongjiang 150001, China
  • show less
    DOI: 10.3788/LOP56.060002 Cite this Article Set citation alerts
    Lianni Xie, Lei Cao, Lu Zhang, Yukui Yu. Techniques for Kerr Nonlinearity Compensation in Fiber Communication Systems[J]. Laser & Optoelectronics Progress, 2019, 56(6): 060002 Copy Citation Text show less
    References

    [1] Winzer P J, Neilson D T. From scaling disparities to integrated parallelism: A decathlon for a decade[J]. Journal of Lightwave Technology, 35, 1099-1115(2017). http://ieeexplore.ieee.org/document/7839935

    [3] Brackett C A. Dense wavelength division multiplexing networks: Principles and applications[J]. IEEE Journal on Selected Areas in Communications, 8, 948-964(1990). http://dl.acm.org/citation.cfm?id=2313652

    [4] Liu X, Chandrasekhar S, Winzer P J. Digital signal processing techniques enabling multi-Tb/s superchannel transmission: An overview of recent advances in DSP-enabled superchannels[J]. IEEE Signal Processing Magazine, 31, 16-24(2014). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6739248

    [5] Yang S J, Ke X Z. Carrier frequency stability control in coherent optical communication[J]. Laser & Optoelectronics Progress, 55, 040601(2018).

    [6] Cao W H. Performance comparison of different chromatic dispersion compensation schemes in quasi-linear fiber-optic transmission system[J]. Acta Optica Sinica, 38, 0406002(2018).

    [7] Dar R, Shtaif M, Feder M. New bounds on the capacity of the nonlinear fiber-optic channel[J]. Optics Letters, 39, 398-401(2014). http://www.ncbi.nlm.nih.gov/pubmed/24562156

    [8] Essiambre R J, Kramer G, Winzer P J et al. Capacity limits of optical fiber networks[J]. Journal of Lightwave Technology, 28, 662-701(2010). http://ieeexplore.ieee.org/document/5420239/

    [9] Agrawal G P[M]. Nonlinear fiber optics(2012).

    [10] Rafique D. Fiber nonlinearity compensation: Commercial applications and complexity analysis[J]. Journal of Lightwave Technology, 34, 544-553(2016). http://www.opticsinfobase.org/jlt/abstract.cfm?uri=jlt-34-2-544

    [11] Ip E, Kahn J M. Compensation of dispersion and nonlinear impairments using digital backpropagation[J]. Journal of Lightwave Technology, 26, 3416-3425(2008). http://www.opticsinfobase.org/abstract.cfm?uri=jlt-26-20-3416

    [12] Secondini M, Marsella D, Forestieri E. Enhanced split-step Fourier method for digital backpropagation. [C]∥2014 The European Conference on Optical Communication, September 21-25, Cannes, France. New York: IEEE, 1-3(2014).

    [13] Guiomar F P, Amado S B, Martins C S et al. Parallel split-step method for digital backpropagation. [C]∥2015 Optical Fiber Communications Conference & Exhibition, March 22-26, Los Angeles, CA, USA. New York: IEEE, Th2A, 28(2015).

    [14] Zhang F Y, Zhuge Q B, Qiu M et al. Advanced and low complexity digital back propagation for subcarrier multiplexing systems. [C]∥2015 Optical Fiber Communications Conference & Exhibition, March 22-26, Los Angeles, CA, USA. New York: IEEE, Th3D, 4(2015).

    [15] Wahls S, Le S T, Prilepsk J E et al. Digital backpropagation in the nonlinear Fourier domain. [C]∥Proceedings of the 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), June 28-July 1, Stockholm, Sweden. New York: IEEE, 445-449(2015).

    [16] Liga G, Xu T H, Alvarado A et al. On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission[J]. Optics Express, 22, 30053-30062(2014). http://europepmc.org/abstract/med/25606935

    [17] Maher R, Lavery D, Millar D et al. Reach enhancement of 100 percent for a DP-64QAM super-channel using MC-DBP. [C]∥2015 Optical Fiber Communications Conference & Exhibition, March 22-26, Los Angeles, CA, USA. New York: IEEE, Th4D, 5(2015).

    [18] Guiomar F P, Amado S B, Ferreira R M et al. Multicarrier digital backpropagation for 400G optical superchannels[J]. Journal of Lightwave Technology, 34, 1896-1907(2016). http://ieeexplore.ieee.org/document/7366538/

    [19] Zhang F Y, Zhuge Q B, Qiu M et al. XPM model-based digital backpropagation for subcarrier-multiplexing systems[J]. Journal of Lightwave Technology, 33, 5140-5150(2015). http://ieeexplore.ieee.org/document/7102691/

    [20] Alic N. Frequency-referenced nonlinearity compensation: The enabler for reach extension and capacity increase. [C]∥2015 European Conference on Optical Communication, September 27-October 1, Valencia, Spain. New York: IEEE, 1-3(2015).

    [21] Alic N, Myslivets E, Temprana E et al. Nonlinearity cancellation in fiber optic links based on frequency referenced carriers[J]. Journal of Lightwave Technology, 32, 2690-2698(2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6840964

    [22] Jansen S L, van den Borne D, Spinnler B et al. . Optical phase conjugation for ultra long-haul phase-shift-keyed transmission[J]. Journal of Lightwave Technology, 24, 54-64(2006). http://ieeexplore.ieee.org/document/1589033

    [23] Cao W H, Wang Y, Liu S H. Dispersion and nonlinearity compensation in optical fiber communication systems by optical phase conjugation incorporated pulse prechirp[J]. Acta Optica Sinica, 32, 0906005(2012).

    [24] Ellis A D. McCarthy M E, Al-Khateeb M A Z, et al. Capacity limits of systems employing multiple optical phase conjugators[J]. Optics Express, 23, 20381-20393(2015).

    [25] Liu X, Chraplyvy A R, Winzer P J et al. Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit[J]. Nature Photonics, 7, 560-568(2013). http://www.nature.com/nphoton/journal/v7/n7/abs/nphoton.2013.109.html

    [26] Liu X, Hu H, Chandrasekhar S et al. Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves by a polarization-insensitive optical parametric amplifier for fiber-nonlinearity-tolerant transmission[J]. Optics Express, 22, 6478-6485(2014). http://europepmc.org/abstract/med/24663996

    [27] Yoshida T, Sugihara T, Ishida K et al. Spectrally-efficient dual phase-conjugate twin waves with orthogonally multiplexed quadrature pulse-shaped signals. [C]∥2014 Optical Fiber Communication Conference, March 9-13, San Francisco, CA, USA. New York: IEEE, M3C, 6(2014).

    [28] Yu Y K, Wang W, Townsend P D et al. Modified phase-conjugate twin wave schemes for spectral efficiency enhancement. [C]∥2015 European Conference on Optical Communication, September 27- October 1, Valencia, Spain. New York: IEEE, 1-3(2015).

    [29] Yi X W, Chen X M, Sharma D et al. Digital coherent superposition of optical OFDM subcarrier pairs with Hermitian symmetry for phase noise mitigation[J]. Optics Express, 22, 13454-13459(2014). http://europepmc.org/abstract/med/24921539

    [30] Le S T. McCarthy M E, Suibhne N M, et al. Phase-conjugated pilots for fibre nonlinearity compensation in CO-OFDM transmission[J]. Journal of Lightwave Technology, 33, 1308-1314(2015).

    [31] Mecozzi A, Clausen C B, Shtaif M. Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission[J]. IEEE Photonics Technology Letters, 12, 392-394(2000). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=839029

    [32] Tao Z N, Dou L, Yan W Z et al. Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate[J]. Journal of Lightwave Technology, 29, 2570-2576(2011). http://www.opticsinfobase.org/jlt/abstract.cfm?uri=jlt-29-17-2570

    [33] Dou L, Tao Z, Li L et al. A low complexity pre-distortion method for intra-channel nonlinearity. [C]∥2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, March 6-10, Los Angeles, CA, USA. New York: IEEE, OThF5(2011).

    [34] Tao Z N, Zhao Y, Fan Y Y et al. Analytical intrachannel nonlinear models to predict the nonlinear noise waveform[J]. Journal of Lightwave Technology, 33, 2111-2119(2015). http://ieeexplore.ieee.org/document/6937066/

    [35] Peng W R, Li Z H, Zhu F et al. Extending perturbative nonlinearity mitigation to PDM-16QAM. [C]∥2014 The European Conference on Optical Communication, September 21-25, Cannes, France. New York: IEEE, 1-3(2014).

    [36] Gao Y, Cartledge J C, Karar A S et al. Reducing the complexity of perturbation based nonlinearity pre-compensation using symmetric EDC and pulse shaping[J]. Optics Express, 22, 1209-1219(2014). http://www.ncbi.nlm.nih.gov/pubmed/24515126

    [38] Li Z H, Peng W R, Zhu F et al. Optimum quantization of perturbation coefficients for perturbative fiber nonlinearity mitigation. [C]∥2014 The European Conference on Optical Communication, September 21-25, Cannes, France. New York: IEEE, 1-3(2014).

    [39] Liang D. Advanced digital nonlinear distortion compensation. [C]∥2015 Optical Fiber Communications Conference & Exhibition, March 22-26, Los Angeles, CA, USA. New York: IEEE, Th3G, 3(2015).

    [40] Peng W R. Training based determination of perturbation coefficients for fiber nonlinearity mitigation. [C]∥2015 Optical Fiber Communications Conference & Exhibition, March 22-26, Los Angeles, CA, USA. New York: IEEE, Th3D, 2(2015).

    [41] Cartledge J C, Guiomar F P, Kschischang F R et al. Digital signal processing for fiber nonlinearities[J]. Optics Express, 25, 1916-1936(2017). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-25-3-1916

    [42] Freckmann T, Essiambre R J, Winzer P J et al. Fiber capacity limits with optimized ring constellations[J]. IEEE Photonics Technology Letters, 21, 1496-1498(2009). http://ieeexplore.ieee.org/document/5200532/

    [43] Lotz T H, Liu X, Chandrasekhar S et al. Coded PDM-OFDM transmission with shaped 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach[J]. Journal of Lightwave Technology, 31, 538-545(2013). http://ieeexplore.ieee.org/document/6290330/

    [44] Karlsson M, Agrell E. Which is the most power-efficient modulation format in optical links?[J]. Optics Express, 17, 10814-10819(2009). http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-13-10814

    [45] Millar D S, Koike-Akino T, Arık S Ö et al. High-dimensional modulation for coherent optical communications systems[J]. Optics Express, 22, 8798-8812(2014). http://www.opticsinfobase.org/abstract.cfm?uri=oe-22-7-8798

    [46] Shiner A D, Reimer M, Borowiec A et al. Demonstration of an 8-dimensional modulation format with reduced inter-channel nonlinearities in a polarization multiplexed coherent system[J]. Optics Express, 22, 20366-20374(2014). http://www.ncbi.nlm.nih.gov/pubmed/25321245

    [47] Buchali F, Steiner F, Böcherer G et al. Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration[J]. Journal of Lightwave Technology, 34, 1599-1609(2016). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=7360102

    [48] Ghazisaeidi A. Ruiz I D J, Müller R R, et al. 65 Tb/s transoceanic transmission using probabilistically-shaped PDM-64QAM. [C]∥European Conference on Optical Communication, September 18-22, Dusseldorf, Germany. New York: IEEE, Th3C4(2016).

    [49] Yankov M P, da Ros F, da Silva E P et al. . Constellation shaping for WDM systems using 256QAM/1024QAM with probabilistic optimization[J]. Journal of Lightwave Technology, 34, 5146-5156(2016). http://ieeexplore.ieee.org/document/7563861/

    [50] Yousefi M I, Kschischang F R. Informationtransmission using the nonlinear Fourier transform, part I: Mathematical tools[J]. IEEE Transactions on Information Theory, 60, 4312-4328(2014).

    [51] Yousefi M I, Kschischang F R. Information transmission using the nonlinear Fourier transform, part II: Numerical methods[J]. IEEE Transactions on Information Theory, 60, 4329-4345(2014). http://www.onacademic.com/detail/journal_1000036488229210_c846.html

    [52] Yousefi M I, Kschischang F R. Information transmission using the nonlinear Fourier transform, part III: Spectrum modulation[J]. IEEE Transactions on Information Theory, 60, 4346-4369(2014). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6808527

    [53] Bülow H. Experimental demonstration of optical signal detection using nonlinear Fourier transform[J]. Journal of Lightwave Technology, 33, 1433-1439(2015). http://ieeexplore.ieee.org/document/7029087/

    [54] Le S T, Aref V, Buelow H. Nonlinear signal multiplexing for communication beyond the Kerr nonlinearity limit[J]. Nature Photonics, 11, 570-576(2017). http://www.nature.com/nphoton/journal/v11/n9/nphoton.2017.118/metrics

    [55] Wahls S, Poor H V. Fast inverse nonlinear Fourier transform for generating multi-solitons in optical fiber. [C]∥IEEE International Symposium on Information Theory, 1676-1680(2015).

    [56] Peddanarappagari K V, Brandt-Pearce M. Volterra series transfer function of single-mode fibers[J]. Journal of Lightwave Technology, 15, 2232-2241(1997). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=643545

    [57] Liu L, Li L C, Huang Y D et al. Intrachannel nonlinearity compensation by inverse Volterra series transfer function[J]. Journal of Lightwave Technology, 30, 310-316(2012). http://ieeexplore.ieee.org/document/6118297

    [58] Amado S B, Guiomar F P, Muga N J et al. Experimental demonstration of the parallel split-step method in ultra-long-haul 400G transmission. [C]∥2015 European Conference on Optical Communication, June 14-19, Hong Kong, China. New York: IEEE, 1-3(2015).

    [59] Bakhshali A, Chan W Y, Cartledge J C et al. Frequency-domain Volterra-based equalization structures for efficient mitigation of intrachannel Kerr nonlinearities[J]. Journal of Lightwave Technology, 34, 1770-1777(2016). http://ieeexplore.ieee.org/document/7361749/

    [60] Guiomar F P, Pinto A N. Simplified Volterra series nonlinear equalizer for polarization-multiplexed coherent optical systems[J]. Journal of Lightwave Technology, 31, 3879-3891(2013). http://www.opticsinfobase.org/abstract.cfm?URI=jlt-31-23-3879

    [61] Amari A, Dobre O A, Venkatesan R. Fifth-order Volterra-based equalizer for fiber nonlinearity compensation in Nyquist WDM superchannel system. [C]∥2017 19th International Conference on Transparent Optical Networks (ICTON), July 2-6, Girona, Spain. New York: IEEE, 1-4(2017).

    [62] Nguyen T, Mhatli S, Giacoumidis E et al. Fiber nonlinearity equalizer based on support vector classification for coherent optical OFDM[J]. IEEE Photonics Journal, 8, 1-9(2016). http://ieeexplore.ieee.org/document/7404238/

    [63] Li M L, Yu S, Yang J et al. Nonparameter nonlinear phase noise mitigation by using M-ary support vector machine for coherent optical systems[J]. Photonics Journal, 5, 7800312(2013). http://ieeexplore.ieee.org/document/6648652/

    [64] Marsella D, Secondini M, Forestieri E. Maximum likelihood sequence detection for mitigating nonlinear effects[J]. Journal of Lightwave Technology, 32, 908-916(2014). http://ieeexplore.ieee.org/document/6680652/

    [65] Amari A, Dobre O A, Venkatesan R et al. A survey on fiber nonlinearity compensation for 400 Gb/s and beyond optical communication systems[J]. IEEE Communications Surveys & Tutorials, 19, 3097-3113(2017). http://ieeexplore.ieee.org/document/7959045/

    [66] Dar R, Winzer P. Nonlinear interference mitigation: Methods and potential gain[J]. Journal of Lightwave Technology, 35, 903-930(2016). http://ieeexplore.ieee.org/document/7809057/

    Lianni Xie, Lei Cao, Lu Zhang, Yukui Yu. Techniques for Kerr Nonlinearity Compensation in Fiber Communication Systems[J]. Laser & Optoelectronics Progress, 2019, 56(6): 060002
    Download Citation