• Acta Optica Sinica
  • Vol. 17, Issue 2, 181 (1997)
[in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]2, and [in Chinese]2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article Set citation alerts
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. An All-Fiber Fused Biconical Filter with Two Ring-Three Fiber Mutually CouplingsSwitching Condition for Dark Soliton Switching Made by Birefringent Fiber with Normal Dispersion[J]. Acta Optica Sinica, 1997, 17(2): 181 Copy Citation Text show less
    References

    [1] A. Safaai-Tazi, J. C. McKeeman. All-fiber spectral filters with nonperiodic bandpass characteristics and high extinction ratios in the wavelength range 0.8 μm<λ<1.6μm. IEEE J. Lightwave Technol., 1991, 9(8): 959~963

    [2] M. S. Yataki, D. N. Payne, M. P. Varnham. All-fiber wavelength filters using concatenated fused-taper couplers. Electron. Lett., 1985, 21(6): 248~249

    [3] D. Marcuse. Directional-coupler filter using dissimilar optical fibres. Electron. Lett., 1985, 21(17): 726~727

    [4] A. C. Boucouvalas, G. Georgiou. Concatenated tapered coaxial coupler filters. IEEE Proc. J., 1987, 134(3): 191~195

    [5] K. Okamoto, J. Noda. Fiber-optic spectral filters consisting of concatenated dual-core fibres. Electron. Lett., 1986, 22(4): 211~212

    [6] F. Sanchez. Matrix algebra for all-fiber optical resonators. IEEE J. Lightwave Technol., 1991, 9(7): 838~844

    [7] J. E. Bowers, S. A. Newton, M. V. Sorin et al.. Filter response of single-mode fiber recirculating delay lines. Electron. Lett., 1982, 18(3): 110~111

    [8] Y. H. Ja. Optical fiber filter comprising a single-coupler fiber ring (or loop) and a double-coupler fiber mirror. IEEE J. Lightwave Technol., 1991, 9(8): 964~974

    [9] Y. H. Ja. A single-mode optical fiber ring resonator using a plannar 3×3 fiber coupler and a sagnac loop. IEEE J. Lightwave Technol., 1994, 12(8): 1348~1354

    [10] F. P. Payne, C. D. Hussey, M. S. Yataki. Modelling fused single-mode-fibre couplers. Electron. Lett., 1985, 21(11): 461~462

    [11] K. O. Hill, D. C. Johnson, R. G. Lamont. Wavelength dependence in fused biconical taper splitters; measurement and control. IOOC-ECOC ′85, Technical Digest, Venice, Italy, 1~4 Oct. 1985, 1: 567~570

    [12] Eisenmann, Michael, EdgarWeidel. Single-mode fused biconical couplers for wavelength division miliplexing with channel spacing between 100 and 300 nm. IEEE J. Lightwave & Technol., 1988, 6(1): 113~119

    [13] A. W. Snyder. Radiation losses due to variations of radius on dielectric or optical fibers. IEEE Trans. Microwave Theory Tech. (USA), 1970, MTT-18(9): 608~615

    [14] D. Marcuse. Mode conversion in optical fibers with monotonically increasing core radius. IEEE J. Lightwave Technol., 1987, LT-5(1): 125~133

    [15] J. L. Altman. Microwave Circuits, Princeton, D. Van Nostrand Company, INC., 1964: 205~212

    [16] S. Lacroix, R. Bourbonnais, F. Gonthier et al.. Tapered monomode optical fibers: understanding large power transfer. Appl. Opt., 1986, 25(23): 4421~4425

    [17] A. W. Snyder. Optical Waveguide Theory. London, Chapmanand Hall Ltd., 1983: 410

    [18] R. Vanclooster, P. Phariseau. The coupling of two parallel dielectric fibers. I. Basic Equations, Physica, 1970, 47: 485~500

    [19] E. A. J. Marcatili. Dielectric rectangular waveguide and directional coupler for integrated optics. Bull. Soc. Tech. J., 1969, 48(9): 2071~2102

    [20] G. P. Agrawal. Nonlinear Fiber Optics. Boston: Academic Press, Inc., 1989: 13

    [21] S. Trillo, S. Wabnitz, W. C. Banyai et al.. Observation of ultrafast nonlinear polarization switching induced by polarization instability in a birefringent fiber rocking filter. IEEE J. Quant. Electron., 1989, QE-25(1): 104~112

    [22] S. Trillo, S. Wabnitz, G. I. Stegeman. Nonlinear propagation and self-switching of ultrashort optical pulses in fiber nonlinear directional couplers: The normal dispersion regime. IEEE J. Quant. Electron., 1989, QE-25(8): 1907~1916

    [23] C. R. Menyuk. Pulse propagation in elliptical birefringent Kerr medium. IEEE J. Quant. Electron., 1989, QE-25(12): 2674~2682

    [24] S. V. Manakov. On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP, 1974, 38(2): 248~253

    [25] C. Elphick. The quantum spectral transformation method for the one- and two-component nonlinear Schrodinger model. J. Phys. (A)., 1983, 16(17): 4013~4024

    [26] P. A. Belanger, C. Pare. Soliton switching and energy coupling in two-mode fibers: analytical results. Phys. Rev. A, 1990, 41(9): 5254~5256

    [27] M. J. Potasek. Soliton solution for coupled periodically twisted birefringent optical fibers. J. Opt. Soc. Am. B, 1993, 10(6): 941~945

    [28] R. S. Tasegal, M. J. Potasek. Soliton solution to coupled higher-order nonlinear Schrodinger equation. J. Math. Phys., 1992, 33(3): 1208~1212

    [30] Y. Kivshar, M. Haelterman, P. Emplit et al.. Gordon-Haus effect on dark soliton. Opt. Lett., 1994, 19(1): 19~21

    [31] M. Lizak, D. Anderson, B. A. Malomed. Dissipative damping of dark soliton in optical fibers. Opt. Lett., 1991, 16(24): 1936~1937

    [32] S. A. Gredeskul, Y. S. Kivshar. Dark-soliton generation in optical fibers. Opt. Lett., 1989, 14(22): 1291~1283

    [33] A. Ankiewicz, M. Karlsson, N. Akhmediev. Dark soliton pairs in fiber couplers. Opt. Commun., 1994, 111(15): 116~122

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. An All-Fiber Fused Biconical Filter with Two Ring-Three Fiber Mutually CouplingsSwitching Condition for Dark Soliton Switching Made by Birefringent Fiber with Normal Dispersion[J]. Acta Optica Sinica, 1997, 17(2): 181
    Download Citation