• NUCLEAR TECHNIQUES
  • Vol. 47, Issue 1, 010003 (2024)
Chunxin WANG1、2, Anchuan FAN1、2、*, Bo LI3、**, Zihan YAN1、2, and Xiaolei ZHANG4
Author Affiliations
  • 1USTC Archaeometry Laboratory, University of Science and Technology of China, Hefei 230026, China
  • 2Department for the History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei 230026, China
  • 3Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong NSW 2522, Australia
  • 4Anhui Provincial Institute of Cultural Relics and Archaeology, Hefei 230601, China
  • show less
    DOI: 10.11889/j.0253-3219.2024.hjs.47.010003 Cite this Article
    Chunxin WANG, Anchuan FAN, Bo LI, Zihan YAN, Xiaolei ZHANG. Luminescence spectrum characteristics and dating studies of archaeologically heated quartz[J]. NUCLEAR TECHNIQUES, 2024, 47(1): 010003 Copy Citation Text show less
    References

    [1] Anderson S L, Feathers J K. Applying luminescence dating of ceramics to the problem of dating Arctic archaeological sites[J]. Journal of Archaeological Science, 112, 105030(2019).

    [2] Wang C X, Ji X, Wu Y J et al. Quartz OSL and TL dating of pottery, burnt clay, and sediment from Beicun archaeological site, China[J]. Quaternary Geochronology, 70, 101281(2022).

    [3] Fu X, Zhang J F, Mo D W et al. Luminescence dating of baked earth and sediments from the Qujialing archaeological site, China[J]. Quaternary Geochronology, 5, 353-359(2010).

    [4] WU Jingwei, GONG Yuwu, XIA Junding. Thermoluminescence dating research of ancient wall bricks from Zhonghe Town, Hainan, China[J]. Sciences of Conservation and Archaeology, 26, 8-13(2014).

    [5] Bailiff I K. Methodological developments in the luminescence dating of brick from English late-medieval and post-medieval buildings[J]. Archaeometry, 49, 827-851(2007).

    [6] WU Jingwei, XIONG Yingfei, GONG Yuwu et al. Research on the thermoluminescent characteristics of porcelain and brick samples unearthed from Qinglong Town in Shanghai[J]. Sciences of Conservation and Archaeology, 30, 36-49(2018).

    [7] Karimi Moayed N, Vandenberghe D A G, Deforce K et al. Bypassing the Suess-effect: age determination of charcoal kiln remains using OSL dating[J]. Journal of Archaeological Science, 120, 105176(2020).

    [8] Armitage S J, Krishna A, Parker L E et al. Optically stimulated luminescence dating of heat retainer hearths from the Sahara: insights into signal accumulation and measurement[J]. Quaternary Geochronology, 49, 249-253(2019).

    [9] Godfrey-Smith D I, Casey J L. Direct thermoluminescence chronology for Early Iron Age smelting technology on the Gambaga Escarpment, Ghana[J]. Journal of Archaeological Science, 30, 1037-1050(2003).

    [10] Wintle A G. Fifty years of luminescence dating[J]. Archaeometry, 50, 276-312(2008).

    [11] Aitken M J[M]. Thermoluminescence dating(1985).

    [12] Solongo S, Tengis S, Wagner G A et al. CW-OSL, LM-OSL and TL dating of bricks from Karakorum, Mongolia: insights from TL spectra[J]. Geochronometria, 48, 402-414(2020).

    [13] Haustein M, Roewer G, Krbetschek M R et al. Dating archaeometallurgical slags using thermoluminescence[J]. Archaeometry, 45, 519-530(2003).

    [14] Hashimoto T. An overview of red-thermoluminescence (RTL) studies on heated quartz and RTL application to dosimetry and dating[J]. Geochronometria, 30, 9-16(2008).

    [15] Haustein M, Krbetschek M R, Trautmann T et al. A luminescence study for dating archaeometallurgical slagspaper[J]. Quaternary Science Reviews, 20, 981-985(2001).

    [16] Rodrigues K, Huot S, Keen-Zebert A. Exploring the application of blue and red thermoluminescence for dating volcanic glasses[J]. Radiation Measurements, 153, 106731(2022).

    [17] Ganzawa Y, Furukawa H, Hashimoto T et al. Single grains dating of volcanic quartz from pyroclastic flows using Red TL[J]. Radiation Measurements, 39, 479-487(2005).

    [18] Song K W, Yun K K, Hong D G. Radiation response of thermoluminescence glow peaks separated using a glow curve fitting method for red emission from quartz[J]. Radiation Measurements, 44, 611-614(2009).

    [19] Bøtter-Jensen L, McKeever S W S, Wintle A G. Passive optically stimulated luminescence dosimetry[M]. Optically Stimulated Luminescence Dosimetry, 101-118(2003).

    [20] Wang C X, Zhang X L, Zhang Y Y et al. Luminescence dating of heated quartz extracted from burnt clay and pottery excavated from the Lingjiatan archaeological site, China[J]. Frontiers in Earth Science, 10, 933342(2022).

    [21] Murray A S, Wintle A G. Application of the single-aliquot regenerative-dose protocol to the 375 ℃ quartz TL signal[J]. Radiation Measurements, 32, 579-583(2000).

    [22] Jain M, Bøtter-Jensen L, Murray A S et al. Revisiting TL: dose measurement beyond the OSL range using SAR[J]. Ancient TL, 23, 9-24(2005).

    [23] Rahimzadeh N, Zhang J J, Tsukamoto S et al. Characteristics of the quartz isothermal thermoluminescence (ITL) signal from the 375 ℃ peak and its potential for extending the age limit of quartz dating[J]. Radiation Measurements, 161, 106899(2023).

    [24] Murray A, Arnold L J, Buylaert J P et al. Optically stimulated luminescence dating using quartz[J]. Nature Reviews Methods Primers, 1, 72(2021).

    [25] Murray A S, Wintle A G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J]. Radiation Measurements, 32, 57-73(2000).

    [26] Chen R, Pagonis V[M]. Advances in physics and applications of optically and thermally stimulated luminescence(2019).

    [27] Westaway K, Prescott J. Investigating signal evolution: a comparison of red and UV/blue TL, and UV OSL emissions from the same quartz sample[J]. Radiation Measurements, 47, 909-915(2012).

    [28] Tan K X, Liu Z H, Zeng S et al. Three-dimensional thermoluminescence spectra of different origin quartz from Altay Orogenic belt, Xinjiang, China[J]. Radiation Measurements, 44, 529-533(2009).

    [29] Götze J. Chemistry, textures and physical properties of quartz—geological interpretation and technical application[J]. Mineralogical Magazine, 73, 645-671(2009).

    [30] Hashimoto T, Notoya S, Arimura T et al. Changes in luminescence colour images from quartz slices with thermal annealing treatments[J]. Radiation Measurements, 26, 233-242(1996).

    [31] Hashimoto T, Hayashi Y, Koyanagi A et al. Red and blue colouration of thermoluminescence from natural quartz sands[J]. International Journal of Radiation Applications and Instrumentation Part D Nuclear Tracks and Radiation Measurements, 11, 229-235(1986).

    [32] Hashimoto T, Koyanagi A, Yokosaka K et al. Thermoluminescence color images from quartzs of beach sands[J]. Geochemical Journal, 20, 111-118(1986).

    [33] Hashimoto T, Sakaue S, Aoki H et al. Dependence of TL-property changes of natural quartzes on aluminium contents accompanied by thermal annealing treatment[J]. Radiation Measurements, 23, 293-299(1994).

    [34] Krbetschek M R, Götze J, Dietrich A et al. Spectral information from minerals relevant for luminescence dating[J]. Radiation Measurements, 27, 695-748(1997).

    [35] Hansen V, Murray A, Buylaert J P et al. A new irradiated quartz for beta source calibration[J]. Radiation Measurements, 81, 123-127(2015).

    [36] Peng J, Kitis G, Sadek A M et al. Thermoluminescence glow-curve deconvolution using analytical expressions: a unified presentation[J]. Applied Radiation and Isotopes, 168, 109440(2021).

    [37] Kitis G, Gomez-Ros J M, Tuyn J W N. Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics[J]. Journal of Physics D: Applied Physics, 31, 2636-2641(1998).

    [38] Kitis G, Pagonis V. On the resolution of overlapping peaks in complex thermoluminescence glow curves[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 913, 78-84(2019).

    [39] Richter D, Krbetschek M. A new thermoluminescence dating technique for heated flint[J]. Archaeometry, 48, 695-705(2006).

    [40] Durcan J A, King G E, Duller G A T. DRAC: dose rate and age calculator for trapped charge dating[J]. Quaternary Geochronology, 28, 54-61(2015).

    [41] Peng J, Dong Z, Han F Q et al. R package numOSL: numeric routines for optically stimulated luminescence dating[J]. Ancient TL, 31, 8(2013).

    [42] Peng J J, Li B. Single-aliquot regenerative-dose (SAR) and standardised growth curve (SGC) equivalent dose determination in a batch model using the R package 'numOSL'[J]. Ancient TL, 35, 22(2017).

    [43] Core Team R[CP]. R: a language and environment for statistical computing(2013).

    Chunxin WANG, Anchuan FAN, Bo LI, Zihan YAN, Xiaolei ZHANG. Luminescence spectrum characteristics and dating studies of archaeologically heated quartz[J]. NUCLEAR TECHNIQUES, 2024, 47(1): 010003
    Download Citation