• Chinese Journal of Quantum Electronics
  • Vol. 39, Issue 3, 446 (2022)
Rong ZHANG* and Kai LING
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007461.2022.03.017 Cite this Article
    ZHANG Rong, LING Kai. Research on entanglement between coin and walker in quantum walk[J]. Chinese Journal of Quantum Electronics, 2022, 39(3): 446 Copy Citation Text show less
    References

    [1] Zhang L, Hao D H, Qiang W C. Preparation of three-atom W state in cavity QED[J]. Chinese Journal of Quantum Electronics, 2020, 37(6): 685-691.

    [2] Shao Z L, Long Y X. Bidirectional and asymmetric quantum controlled teleportation by using a genuine seven-qubit entangled state[J]. Chinese Journal of Quantum Electronics, 2020, 37(1): 34-42.

    [3] Lou X P, Tang W S, Ma H. A dual weak blind signature scheme based on quantum entanglement swapping[J]. Chinese Journal of Quantum Electronics, 2019, 36(2): 174-181.

    [4] Chen J L, Li D F, Zhou Q, et al. Quantum teleportation for unknown six-qubit entangled state and principle verification[J]. Chinese Journal of Quantum Electronics, 2019, 36(4): 456-463.

    [5] Wang Q Q, Xu X Y, Pan W W, et al. Dynamic-disorder-induced enhancement of entanglement in photonic quantum walks[J]. Optica, 2018, 5(9): 1136.

    [6] Nicolas B, Daniel C, Stefano P, et al. Bell nonlocality[J]. Reviews of Modern Physics, 2014, 86(2): 419-478.

    [7] Simon C, Zukowski M, Weinfurter H, et al. Feasible “Kochen-Specker" experiment with single particles[J]. Physical Review Letters, 2000, 85(9): 1783-1786.

    [8] Michler M, Weinfurter H, Zukowski M. Experiments towards falsification of noncontextual hidden variable theories[J]. Physical Review Letters, 2000, 84(24): 5457461.

    [9] Morin O, Bancal J D, Ho M, et al. Witnessing trustworthy single-photon entanglement with local homodyne measurements[J]. Physical Review Letters, 2013, 110(13): 130401.

    [10] Aharonov Y, Davidovich L, Zagury N. Quantum random walks[J]. Physical Review A, 1993, 48(2): 1687-1690.

    [11] Childs A M. Universal computation by quantum walk[J]. Physical Review Letters, 2009, 102(18): 180501.

    [12] Xiao L, Zhan X, Bian Z H, et al. Observation of topological edge states in parity-time-symmetric quantum walks[J]. Nature Physics, 2017, 13(11): 1117-1123.

    [13] Barreiro J T, Wei T C, Kwiat P G. Beating the channel capacity limit for linear photonic superdense coding[J]. Nature Physics, 2008, 4(4): 282-286.

    [14] Briegel H J, Browne D E, Dür W, et al. Measurement-based quantum computation[J]. Nature Physics, 2009, 5(1): 19-26.

    [15] Campbell E T. Enhanced fault-tolerant quantum computing in d-level systems[J]. Physical Review Letters, 2014, 113(23): 230501.

    [16] Giordani T, Polino E, Emiliani S, et al. Experimental engineering of arbitrary qudit states with discrete-time quantum walks[J]. Physical Review Letters, 2019, 122(2): 020503.

    [17] Vieira R, Amorim E P M, Rigolin G. Dynamically disordered quantum walk as a maximal entanglement generator[J]. Physical Review Letters, 2013, 111(18): 180503.

    [18] Vieira R, Amorim E P M, Rigolin G. Entangling power of disordered quantum walks[J]. Physical Review A, 2014, 89(4): 042307.

    [19] Sansoni L, Sciarrino F, Vallone G, et al. Two-particle Bosonic-Fermionic quantum walk via integrated photonics[J]. Physical Review Letters, 2012, 108(1): 010502.

    [20] Tang H, Lin X F, Feng Z, et al. Experimental two-dimensional quantum walk on a photonic chip[J]. Science Advances, 2018, 4(5): eaat3174.

    ZHANG Rong, LING Kai. Research on entanglement between coin and walker in quantum walk[J]. Chinese Journal of Quantum Electronics, 2022, 39(3): 446
    Download Citation