• Journal of Inorganic Materials
  • Vol. 34, Issue 2, 130 (2019)
Shi-Huai ZHAO1、2, Zi-Bo YANG2, Xiao-Ming ZHAO1、3, Wen-Wen XU2, Xin WEN2, Qing-Yin ZHANG1、2, [in Chinese]1、2, [in Chinese]2, [in Chinese]1、3, [in Chinese]2, [in Chinese]2, and [in Chinese]1、2
Author Affiliations
  • 11. State Key Laboratory of Separation Membrane and Membrane Process, Tianjin Polytechnic University, Tianjin 300387, China
  • 22. School of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
  • 33. School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China
  • show less
    DOI: 10.15541/jim20180158 Cite this Article
    Shi-Huai ZHAO, Zi-Bo YANG, Xiao-Ming ZHAO, Wen-Wen XU, Xin WEN, Qing-Yin ZHANG, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Green Preparation and Supercapacitive Performance of NiCo2S4@ACF Heterogeneous Electrode Materials[J]. Journal of Inorganic Materials, 2019, 34(2): 130 Copy Citation Text show less
    References

    [1] P WU Z, R ZHU Y, B JI X. Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material: understanding of its electrochemical properties.. Journal of Power Sources, 267, 888-900(2014).

    [2] H LIU X, B WU D, B WEN Z. Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors.. Journal of Materials Chemistry A, 2, 11569-11573(2014).

    [3] H LI Y, J CAO L, L QIAO. Ni-Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors. J. Mater. Chem. A, 2, 6540-6548(2014).

    [4] R KOTZ, M CARLEN. Principles and applications of electrochemical capacitors. Electrochimica Acta, 45, 2483-2498(2000).

    [5] S WU Z, C REN W, W WANG D. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Advanced Functional Materials, 20, 3595-3602(2010).

    [6] Q YANG, G HU J, D YE X. Preparation and properties of NiO/AC asymmetric capacitor. Journal of Inorganic Materials, 29, 250-256(2014).

    [7] B GAO, J ZHANG L, G ZHANG X. Pyrolysis preparation of nickel oxide and its electrochemical capacitance. Journal of Inorganic Materials, 26, 398-402(2011).

    [8] M SAMO, A TROISI. Supercapacitors based on high surface area MoS2 and MoS2-Fe3O4 nanostructures supported on physical exfoliated graphite. Journal of Nanoscience and Nanotechnology, 17, 3735-3743(2017).

    [9] H CHANG Y, M XIAO Y, Y HAN G. Internal tandem flexible and compressible electrochemical capacitor based on polypyrrole/ carbon fibers. Electrochimica Acta, 257, 335-344(2017).

    [10] M SAMPAIO D, A MAIER M, R SURESH BABU. Binder- free polyaniline interconnected metal hexacyanoferrates nanocomposites (metal = Ni, Co) on carbon fibers for flexible supercapacitors. Journal of Materials Science: Materials in Electronics, 28, 17405-17413(2017).

    [11] H MA Y, H PANG, Z WEI C. Nickel phosphite superstructures assembled by nanotubes: original application for effective electrode materials of supercapacitors. ChemPlusChem, 78, 546-553(2013).

    [12] B LIU X, H YIN Y, P WU Z. Hierarchical NiCo2S4@PANI core/shell nanowires grown on carbon fiber with enhanced electrochemical performance for hybrid supercapacitors. Chemical Engineering Journal, 323, 330-339(2017).

    [13] T ZHENG X, Q HU Q, X GU Z. Three-dimensional Co3O4@NiO hierarchical nanowire arrays for solid-state symmetric supercapacitor with enhanced electrochemical performances. Chemical Engineering Journal, 304, 223-231(2016).

    [14] Y ZHANG, J XU, Y ZHENG Y. NiCo2S4@NiMoO4 core-shell heterostructure nanotube arrays grown on Ni foam as a binder-free electrode displayed high electrochemical performance with high capacity. Nanoscale Res. Lett., 12, 412-420(2017).

    [15] D YAO Y, Q WEN J, L YAN M. Construction of a hierarchical NiCo2S4@PPy core-shell heterostructure nanotube array on Ni foam for a high-performance asymmetric supercapacitor. ACS Appl. Mater. Interfaces, 8, 24525-24535(2016).

    [16] R ZHU Y, B JI X, B WU Z. NiCo2S4 hollow microsphere decorated by acetylene black for high-performance asymmetric supercapacitor.. Electrochimica Acta, 186, 562-571(2015).

    [17] Y XU G, F SHEN L, J WANG. NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Advanced Energy Materials, 5(2015).

    [18] N GONG Y, X PAN C, L LI D. Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors. Sci. Rep., 6, 29788-29794(2016).

    [19] J MA X, B ZHANG W, B KONG L. Design and synthesis of 3D Co3O4@MMoO4(M=Ni, Co) nanocomposites as high-performance supercapacitor electrodes. Electrochimica Acta, 130, 660-669(2014).

    [20] J JIANG J, Z WAN H, W YU J. NiCo2S4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors. CrystEngComm, 15, 7649-7651(2013).

    [21] , M LI R, Y HE X. Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors.. Chemical Engineering Journal, 334, 1573-1583(2018).

    [22] N HE Z, M CHEN Y, X ZHANG G. Surfactant dependence of nanostructured NiCo2S4 films on Ni foam for superior electrochemical performance. Journal of Inorganic Materials, 33, 289-294(2018).

    [23] Z TANG, H TANG C, H GONG. A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Advanced Functional Materials, 22, 1272-1278(2012).

    [24] L LIU, N CHEN R, S ZHOU J. High-performance nickel- cobalt-boron material for an asymmetric supercapacitor with an ultrahigh energy density.. Journal of Power Sources, 341, 75-82(2017).

    [25] M PARK, F ZHANG Y, Y KIM H. Moderated surface defects of Ni particles encapsulated with NiO nanofibers as supercapacitor with high capacitance and energy density. J. Colloid Interface Sci., 500, 155-163(2017).

    [26] H HUA, , R HOU L. Anion-exchange formation of hollow NiCo2S4 nanoboxes from mesocrystalline nickel cobalt carbonate nanocubes towards enhanced pseudocapacitive properties.. ChemPlusChem, 81, 557-563(2016).

    [27] H YUAN X, C ZHENG, Y FENG. Core-shell structure ultrathin NiCo2S4@graphene as high performance positive electrode for hybrid supercapacitors. Journal of Materials Chemistry A, 6, 5856-5861(2018).

    [28] P WANG F, Q ZHOU Q, F LI G. One-step hydrothermal synthesis of sandwich-type NiCo2S4 @reduced graphene oxide composite as active electrode material for supercapacitors. Applied Surface Science, 425, 180-187(2017).

    Shi-Huai ZHAO, Zi-Bo YANG, Xiao-Ming ZHAO, Wen-Wen XU, Xin WEN, Qing-Yin ZHANG, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Green Preparation and Supercapacitive Performance of NiCo2S4@ACF Heterogeneous Electrode Materials[J]. Journal of Inorganic Materials, 2019, 34(2): 130
    Download Citation