• Photonics Research
  • Vol. 8, Issue 8, 1324 (2020)
Byungjoo Kim1, Seongjin Hong1, Jaedeok Park2, Yongsoo Lee1, Dong-il Yeom2, and Kyunghwan Oh1、*
Author Affiliations
  • 1Photonic Device Physics Laboratory, Institute of Physics and Applied Physics, Yonsei University, Seoul 03722, South Korea
  • 2Department of Physics and Energy Systems Research, Ajou University, Suwon 16499, South Korea
  • show less
    DOI: 10.1364/PRJ.396566 Cite this Article Set citation alerts
    Byungjoo Kim, Seongjin Hong, Jaedeok Park, Yongsoo Lee, Dong-il Yeom, Kyunghwan Oh. Laser-driven self-exfoliation of graphene oxide layers on a fiber facet for Q switching of an Er-doped fiber laser at the longest wavelength[J]. Photonics Research, 2020, 8(8): 1324 Copy Citation Text show less
    References

    [1] S. Hong, F. Lédée, J. Park, S. Song, H. Lee, Y. S. Lee, B. Kim, D. I. Yeom, E. Deleporte, K. Oh. Mode-locking of all-fiber lasers operating at both anomalous and normal dispersion regimes in the C- and L-bands using thin film of 2D perovskite crystallites. Laser Photonics Rev., 12, 1800118(2018).

    [2] R. Khazaeizhad, S. H. Kassani, H. Jeong, D.-I. Yeom, K. Oh. Mode-locking of Er-doped fiber laser using a multilayer MoS2 thin film as a saturable absorber in both anomalous and normal dispersion regimes. Opt. Express, 22, 23732-23742(2014).

    [3] R. Khazaeinezhad, T. Nazari, H. Jeong, K. J. Park, B. Y. Kim, D.-I. Yeom, K. Oh. Passive Q-switching of an all-fiber laser using WS2-deposited optical fiber taper. IEEE Photonics J., 7, 1503507(2015).

    [4] R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D.-I. Yeom, K. Oh. Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nanosheets. IEEE Photonics Technol. Lett., 27, 1581-1584(2015).

    [5] R. Khazaeinezhad, S. H. Kassani, H. Jeong, T. Nazari, D.-I. Yeom, K. Oh. Mode-locked all-fiber lasers at both anomalous and normal dispersion regimes based on spin-coated MoS2 nano-sheets on a side-polished fiber. IEEE Photonics J., 7, 1500109(2015).

    [6] Y. Meng, G. Semaan, M. Salhi, A. Niang, K. Guesmi, Z.-C. Luo, F. Sanchez. High power L-band mode-locked fiber laser based on topological insulator saturable absorber. Opt. Express, 23, 23053-23058(2015).

    [7] J. Nicholson, R. Windeler, D. DiGiovanni. Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces. Opt. Express, 15, 9176-9183(2007).

    [8] M. Chernysheva, C. Mou, R. Arif, M. AlAraimi, M. Rümmeli, S. Turitsyn, A. Rozhin. High power Q-switched thulium doped fibre laser using carbon nanotube polymer composite saturable absorber. Sci. Rep., 6, 24220(2016).

    [9] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077-3083(2009).

    [10] G. Xie, J. Ma, P. Lv, W. Gao, P. Yuan, L. Qian, H. Yu, H. Zhang, J. Wang, D. Tang. Graphene saturable absorber for Q-switching and mode locking at 2 μm wavelength. Opt. Mater. Express, 2, 878-883(2012).

    [11] A. Martinez, Z. Sun. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics, 7, 842-845(2013).

    [12] Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, J. Tian. Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes. Appl. Phys. Lett., 94, 021902(2009).

    [13] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater., 22, 3906-3924(2010).

    [14] H.-R. Chen, C.-Y. Tsai, H.-M. Cheng, K.-H. Lin, W.-F. Hsieh. Passive mode locking of ytterbium-and erbium-doped all-fiber lasers using graphene oxide saturable absorbers. Opt. Express, 22, 12880-12889(2014).

    [15] X. Li, K. Wu, Z. Sun, B. Meng, Y. Wang, Y. Wang, X. Yu, X. Yu, Y. Zhang, P. P. Shum. Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers. Sci. Rep., 6, 25266(2016).

    [16] X. Li, Y. Tang, Z. Yan, Y. Wang, B. Meng, G. Liang, H. Sun, X. Yu, Y. Zhang, X. Cheng. Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers. IEEE J. Sel. Top. Quantum Electron., 20, 441-447(2014).

    [17] Z.-B. Liu, X. He, D. Wang. Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution. Opt. Lett., 36, 3024-3026(2011).

    [18] G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, K. M. Abramski. Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt. Express, 20, 19463-19473(2012).

    [19] D. Steinberg, R. M. Gerosa, F. N. Pellicer, J. D. Zapata, S. H. Domingues, E. A. T. de Souza, L. A. Saito. Graphene oxide and reduced graphene oxide as saturable absorbers onto D-shaped fibers for sub 200-fs EDFL mode-locking. Opt. Mater. Express, 8, 144-156(2018).

    [20] J. Xu, J. Liu, S. Wu, Q.-H. Yang, P. Wang. Graphene oxide mode-locked femtosecond erbium-doped fiber lasers. Opt. Express, 20, 15474-15480(2012).

    [21] J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, K. M. Abramski. Graphene oxide paper as a saturable absorber for Er-and Tm-doped fiber lasers. Photon. Res., 3, 119-124(2015).

    [22] J. Lee, J. Koo, P. Debnath, Y. Song, J. Lee. A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber. Laser Phys. Lett., 10, 035103(2013).

    [23] H. Ahmad, M. Soltanian, M. Alimadad, S. Harun. Stable narrow spacing dual-wavelength Q-switched graphene oxide embedded in a photonic crystal fiber. Laser Phys., 24, 105101(2014).

    [24] N. Aziz, Z. Jusoh, M. Lokman, M. Yasin, E. Hanafi, S. Harun. Q-switched erbium-doped fiber laser with graphene oxide embedded in PMMA film. Digest J. Nanomater. Biostruct., 12, 325-330(2017).

    [25] H. Ahmad, F. Muhammad, M. Zulkifli, S. Harun. Graphene-oxide-based saturable absorber for all-fiber Q-switching with a simple optical deposition technique. IEEE Photonics J., 4, 2205-2213(2012).

    [26] R. Khazaeinezhad, S. H. Kassani, T. Nazari, H. Jeong, J. Kim, K. Choi, J.-U. Lee, J. H. Kim, H. Cheong, D.-I. Yeom. Saturable optical absorption in MoS2 nano-sheet optically deposited on the optical fiber facet. Opt. Commun., 335, 224-230(2015).

    [27] H. Ahmad, N. Ruslan, M. Ismail, S. Reduan, C. Lee, S. Sathiyan, S. Sivabalan, S. W. Harun. Passively Q-switched erbium-doped fiber laser at C-band region based on WS2 saturable absorber. Appl. Opt., 55, 1001-1005(2016).

    [28] Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt. Express, 23, 12823-12833(2015).

    [29] H. Mu, S. Lin, Z. Wang, S. Xiao, P. Li, Y. Chen, H. Zhang, H. Bao, S. P. Lau, C. Pan. Black phosphorus-polymer composites for pulsed lasers. Adv. Opt. Mater., 3, 1447-1453(2015).

    [30] M. A. Ismail, S. W. Harun, H. Ahmad, M. C. Paul. Passive Q-switched and Mode-locked Fiber Lasers Using Carbon-based Saturable Absorbers(2016).

    [31] B. Janczuk, A. Zdziennicka. A study on the components of surface free energy of quartz from contact angle measurements. J. Mater. Sci., 29, 3559-3564(1994).

    [32] W. Lim, Y. Yap, W. Chong, C. Pua, N. Huang, R. De La Rue, H. Ahmad. Graphene oxide-based waveguide polariser: from thin film to quasi-bulk. Opt. Express, 22, 11090-11098(2014).

    [33] K.-H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto, M. Schmidt. Metal ablation with short and ultrashort laser pulses. Phys. Proc., 12, 230-238(2011).

    [34] G. G. Gladush, I. Smurov. Physics of Laser Materials Processing: Theory and Experiment(2011).

    [35] H. N. Tien, J. S. Chung, S. H. Hur. Fabrication of a novel 2D-graphene/2D-NiO nanosheet-based hybrid nanostructure and its use in highly sensitive NO2 sensors. Sens. Actuators B, 185, 701-705(2013).

    [36] S. Jaworski, M. Wierzbicki, E. Sawosz, A. Jung, G. Gielerak, J. Biernat, H. Jaremek, W. Łojkowski, B. Woźniak, J. Wojnarowicz. Graphene oxide-based nanocomposites decorated with silver nanoparticles as an antibacterial agent. Nanosc. Res. Lett., 13, 116(2018).

    [37] S. K. Tiwari, G. Hatui, R. Oraon, A. De Adhikari, G. C. Nayak. Mixing sequence driven controlled dispersion of graphene oxide in PC/PMMA blend nanocomposite and its effect on thermo-mechanical properties. Curr. Appl. Phys., 17, 1158-1168(2017).

    [38] S. R. Dugasani, B. Paulson, T. Ha, T. S. Jung, B. Gnapareddy, J. A. Kim, T. Kim, H. J. Kim, J. H. Kim, K. Oh. Fabrication and optoelectronic characterisation of lanthanide-and metal-ion-doped DNA thin films. J. Phys. D, 51, 285301(2018).

    [39] P. Raturi, J. Singh. Sunlight-driven eco-friendly smart curtain based on infrared responsive graphene oxide-polymer photoactuators. Sci. Rep., 8, 3687(2018).

    [40] M. Mazurkiewicz-Pawlicka, M. Nowak, A. Malolepszy, A. Witowski, D. Wasik, Y. Hu, L. Stobinski. Graphene oxide with controlled content of oxygen groups as a filler for polymer composites used for infrared radiation shielding. Nanomaterials, 10, 32(2020).

    [41] A. Martinez, S. Yamashita. Carbon nanotube-based photonic devices: applications in nonlinear optics. Carbon Nanotubes Applications on Electron Devices, 367-386(2011).

    [42] X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, J. Zhu. Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning. Opt. Express, 19, 1168-1173(2011).

    [43] A. H. Hamad. Effects of different laser pulse regimes (nanosecond, picosecond and femtosecond) on the ablation of materials for production of nanoparticles in liquid solution. High Energy and Short Pulse Lasers, 305-325(2016).

    [44] A. Matsumoto, H. Ohba, M. Toshimitsu, K. Akaoka, A. Ruas, I. Wakaida, T. Sakka, S. Yae. Enhancement of molecular formation in fiber-optic laser ablation with a long nanosecond pulsed laser. Spectrochim. Acta B, 155, 56-60(2019).

    [45] V. Kravets, O. Marshall, R. Nair, B. Thackray, A. Zhukov, J. Leng, A. Grigorenko. Engineering optical properties of a graphene oxide metamaterial assembled in microfluidic channels. Opt. Express, 23, 1265-1275(2015).

    [46] H. Ahmad, C. Lee, M. A. Ismail, Z. Ali, S. Reduan, N. Ruslan, S. W. Harun. Tunable Q-switched fiber laser using zinc oxide nanoparticles as a saturable absorber. Appl. Opt., 55, 4277-4281(2016).

    [47] H. Ahmad, A. Z. Zulkifli, M. Yasin, M. F. Ismail, K. Thambiratnam. In2Se3 saturable absorber for generating tunable Q-switched outputs from a bismuth-erbium doped fiber laser. Laser Phys. Lett., 15, 115105(2018).

    [48] H. Ahmad, S. A. Reduan, N. Ruslan, C. S. J. Lee, M. Z. Zulkifli, K. Thambiratnam. Tunable Q-switched erbium-doped fiber laser in the C-band region using nanoparticles (TiO2). Opt. Commun., 435, 283-288(2019).

    [49] H. Ahmad, N. Ruslan, Z. Ali, S. Reduan, C. Lee, R. Shaharuddin, N. Nayan, M. A. Ismail. Ag-nanoparticle as a Q switched device for tunable C-band fiber laser. Opt. Commun., 381, 85-90(2016).

    [50] Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, H. Zhang. Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide. Photon. Res., 7, 494-502(2019).

    [51] L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo. Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion. Adv. Opt. Mater., 6, 1700985(2018).

    [52] C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, H. Zhang. 2D nonlayered selenium nanosheets: facile synthesis, photoluminescence, and ultrafast photonics. Adv. Opt. Mater., 5, 1700884(2017).

    [53] Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li. An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator. Laser Photonics Rev., 13, 1800313(2019).

    [54] J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu. Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation. Adv. Opt. Mater., 5, 1700026(2017).

    [55] D. H. Titterton. Military Laser Technology and Systems(2015).

    [56] A. Badawi, M. A. Tome, A. Atteya, N. Sami, I. A. Morsy. Retrospective analysis of non-ablative scar treatment in dark skin types using the sub-millisecond Nd:YAG 1,064  nm laser. Lasers Surg. Med., 43, 130-136(2011).

    [57] N. B. Dahotre, S. Harimkar. Laser Fabrication and Machining of Materials(2008).

    [58] L. Li, X. Yang, L. Zhou, W. Xie, Y. Bai, G. Ye, Y. Shen, Z. Lv, H. Zhang, M. Chen. BN as a saturable absorber for a passively mode-locked 2  μm solid-state laser. Physica Status Solidi (RRL), 13, 1800482(2019).

    Byungjoo Kim, Seongjin Hong, Jaedeok Park, Yongsoo Lee, Dong-il Yeom, Kyunghwan Oh. Laser-driven self-exfoliation of graphene oxide layers on a fiber facet for Q switching of an Er-doped fiber laser at the longest wavelength[J]. Photonics Research, 2020, 8(8): 1324
    Download Citation