• Journal of Geo-information Science
  • Vol. 22, Issue 1, 122 (2020)
Zhenhong DU1、1、2、2、*, Sensen WU1、1、2、2, Zhongyi WANG1、1, Yuanyuan WANG1、1、2、2, Feng ZHANG1、1、2、2, and Renyi LIU1、1、2、2
Author Affiliations
  • 1School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
  • 1浙江大学地球科学学院,地理与空间信息研究所,杭州 310027
  • 2Zhejiang Provincial Key Laboratory of Geographic Information Science, Hangzhou 310028, China
  • 2浙江省资源与环境信息系统重点实验室,杭州 310028
  • show less
    DOI: 10.12082/dqxxkx.2020.190533 Cite this Article
    Zhenhong DU, Sensen WU, Zhongyi WANG, Yuanyuan WANG, Feng ZHANG, Renyi LIU. Estimating Ground-Level PM2.5 Concentrations Across China Using Geographically Neural Network Weighted Regression[J]. Journal of Geo-information Science, 2020, 22(1): 122 Copy Citation Text show less
    References

    [1] 中华人民共和国生态环境部. 2017中国生态环境状况公报[P]. 北京:2018. [ Ministry of Ecological Environment of the People's Republic of China, Ecological Environment Bulletin of China in 2017[P]. Beijing:2018. ] [ Ministry of Ecological Environment of the People's Republic of China, Ecological Environment Bulletin of China in 2017[P]. Beijing: 2018. ]

    [2] et alLung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution[J]. Jama, 287, 1132-1141(2002).

    [3] et alEstimating national-scale ground-level PM2.5 concentration in China using geographically weighted regression based on MODIS and MISR AOD[J]. Environmental Science and Pollution Research, 23, 8327-8338(2016).

    [4] et alEstimating ground-level PM2.5 in China using satellite remote sensing[J]. Environmental Science & Technology, 48, 7436-7444(2014).

    [5] 蒲强, 邹滨, 翟亮, 等. 集成多源遥感数据的PM2.5浓度空间分布制图[J]. 地球信息科学学报, 2016,18(12):1717-1724. [ PuQ, ZouB, ZhaiL, et al. Mapping of PM2.5 fine particulates using multi-source remote sensing data. Journal of Geo-informationScience, 2016,18(12):1717-1724. ] 2.5浓度空间分布制图[J].地球信息科学学报,2016,18(12):1717-1724. [ Pu Q, Zou B, Zhai L, et al. Mapping of PM2.5 fine particulates using multi-source remote sensing data. Journal of Geo-information Science, 2016,18(12):1717-1724. ]

    [6] Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach[J]. Journal of Geophysical Research: Atmospheres, 114(2009).

    [7] et alGlobal monitoring of air pollution over land from the earth observing system-Terra Moderate Resolution Imaging Spectroradiometer (MODIS)[J]. Journal of Geophysical Research: Atmospheres, 108(2003).

    [8] Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies[J]. Geophysical Research Letters, 30(2003).

    [9] et alEstimating ground-level PM2.5 in the eastern United States using satellite remote sensing[J]. Environmental Science & Technology, 39, 3269-3278(2005).

    [10] 李啸天, 吴绍华, 徐于月, 等. 江苏省PM2.5质量浓度的时空变化格局模拟[J]. 环境监测管理与技术, 2017,29(2):16-20. [ Li XT, Wu SH, Xu YY, et al. Temporal and spatial variation pattern of PM2.5 mass concentration in Jiangsu[J]. The Administration and Technique of Environmental Monitoring, 2017,29(2):16-20. ] 2.5质量浓度的时空变化格局模拟[J].环境监测管理与技术,2017,29(2):16-20. [ Li X T, Wu S H, Xu Y Y, et al. Temporal and spatial variation pattern of PM2.5 mass concentration in Jiangsu[J]. The Administration and Technique of Environmental Monitoring, 2017,29(2):16-20. ]

    [11] 邹雨轩, 吴志峰, 曹峥. 耦合土地利用回归与人口加权模型的PM2.5暴露风险评估[J]. 地球信息科学学报, 2019,21(7):1018-1028. [ Zou YX, Wu ZF, CaoZ. Assessing PM2.5 exposure risk by coupling land use regression model and population weighted model[J]. Journal of Geo-information Science, 2019,21(7):1018-1028. ] 2.5暴露风险评估[J].地球信息科学学报,2019,21(7):1018-1028. [ Zou Y X, Wu Z F, Cao Z. Assessing PM2.5 exposure risk by coupling land use regression model and population weighted model[J]. Journal of Geo-information Science, 2019,21(7):1018-1028. ]

    [12] Geographically weighted regression: The analysis of spatially varying relationships[M]. UK: John Wiley & Sons(2002).

    [13] Geographically weighted regression: A method for exploring spatial nonstationarity[J]. Geographical Analysis, 28, 281-298(1996).

    [14] High-resolution spatiotemporal mapping of PM2.5 concentrations at Mainland China using a combined BME-GWR technique[J]. Atmospheric Environment, 173, 295-305(2018).

    [15] et alNational-scale estimates of ground-level PM2.5 concentration in China using geographically weighted regression based on 3 km resolution MODIS AOD[J]. Remote Sensing, 8, 184(2016).

    [16] et alA satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China[J]. Remote Sensing of Environment, 154, 1-7(2014).

    [17] et alEstimating ground-level PM2.5 concentrations in the southeastern US using geographically weighted regression[J]. Environmental Research, 121, 1-10(2013).

    [18] et alAn improved geographically weighted regression model for PM2.5 concentration estimation in large areas[J]. Atmospheric Environment, 181, 145-154(2018).

    [19] 赵阳阳, 刘纪平, 杨毅, 等. 一种协同时空地理加权回归PM2.5浓度估算方法[J]. 测绘科学, 2016,41(12):172-178. [ Zhao YY, Liu JP, YangY, et al. An approach of co-training geographically and temporally weighted regression to estimate PM2.5concentration[J]. Science of Surveying and Mapping, 2016,41(12):172-178. ] 2.5浓度估算方法[J].测绘科学,2016,41(12):172-178. [ Zhao Y Y, Liu J P, Yang Y, et al. An approach of co-training geographically and temporally weighted regression to estimate PM2.5concentration[J]. Science of Surveying and Mapping, 2016,41(12):172-178. ]

    [20] Impact assessment of meteorological and environmental parameters on PM2.5 concentrations using remote sensing data and GWR analysis (case study of Tehran)[J]. Environmental Science and Pollution Research, 26, 24331-24345(2019).

    [21] Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling[J]. Remote Sensing of Environment, 206, 72-83(2018).

    [22] Exploring spatial influence of remotely sensed PM2.5 concentration using a developed deep convolutional neural network model[J]. International Journal of Environmental Research and Public Health, 16, 454(2019).

    [23] et alPoint-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: Methods and assessment[J]. Atmospheric Environment, 152, 477-489(2017).

    [24] Artificial neural network forecast application for fine particulate matter concentration using meteorological data[J]. Global Journal of Environmental Science and Management, 3, 333-340(2017).

    [25] et alEstimating regional ground-Level PM2.5 directly from satellite top-of-atmosphere reflectance using deep belief networks[J]. Journal of Geophysical Research: Atmospheres, 123, 13875-13886(2018).

    [26] Prediction algorithm of PM2.5 mass concentration based on adaptive BP neural network[J]. Computing, 100, 825-838(2018).

    [27] Forecasting PM10 levels using ANN and MLR: A case study for Sakarya City[J]. Global Nest Journal, 20, 281-290(2018).

    [28] et alEstimation of PM2.5 concentrations over Beijing with MODIS AODs using an artificial neural network[J]. Sola, 14, 14-18(2018).

    [29] 符海月, 张祎婷. 时间尺度重构EEMD-GRNN改进模型预测PM2.5的研究[J]. 地球信息科学学报, 2019,21(7):1132-1142. [ Fu HY, Zhang YT. Improving the EEMD-GRNN model for PM2.5 prediction based on time scale reconstruction[J]. Journal of Geo-information Science, 2019,21(7):1132-1142. ] 2.5的研究[J].地球信息科学学报,2019,21(7):1132-1142. [ Fu H Y, Zhang Y T. Improving the EEMD-GRNN model for PM2.5 prediction based on time scale reconstruction[J]. Journal of Geo-information Science, 2019,21(7):1132-1142. ]

    [30] The theory and method of geographically and temporally neural network weighted regression. Hangzhou: Zhejiang University(2018).

    [31] China National Environmental Monitoring Centre[online]. http://www.cnemc.cn

    [32] [online]. LAADS DAAC. https://ladsweb.modaps.eosdis.nasa.gov

    [33] [online]. ETOPO1 Global Relief Model. https://www.ngdc.noaa.gov/mgg/global/global.html

    [34] [online]. ERA5 hourly data. https://cds.climate.copernicus.eu

    [35] Statistical tests for spatial nonstationarity based on the geographically weighted regression model[J]. Environment & Planning A, 32, 9-32(2000).

    [36] et alDropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 15, 1929-1958(2014).

    [37] et alDelving deep into rectifiers: Surpassing human-level performance on imagenet classification: Proceedings of the IEEE international conference on computer vision[C](2015).

    [38] Batch normalization: Accelerating deep network training by reducing internal covariate shift[J]. arXiv preprint arXiv:1502.03167(2015).

    [39] GWR4 user manual[J]. WWW Document. Available online:(2014). http://www.st-andrews.ac.uk/geoinformatics/wp-content/uploads/GWR4manual_201311.pdf

    [40] et alSuppression of precipitation by dust particles originated in the Tibetan Plateau[J]. Atmospheric Environment, 43, 568-574(2009).

    [41] et alModern dust storms in China: An overview[J]. Journal of Arid Environments, 58, 559-574(2004).

    Zhenhong DU, Sensen WU, Zhongyi WANG, Yuanyuan WANG, Feng ZHANG, Renyi LIU. Estimating Ground-Level PM2.5 Concentrations Across China Using Geographically Neural Network Weighted Regression[J]. Journal of Geo-information Science, 2020, 22(1): 122
    Download Citation