• Infrared and Laser Engineering
  • Vol. 47, Issue 1, 103002 (2018)
Ma Yi1、2、*, Yan Hong1、2, Sun Yinhong1、2, Peng Wanjing1、2, Li Jianmin1、2, Wang Shufeng1、2, Li Tenglong1、2, Wang Yanshan1、2, Tang Chun1、2, and Zhang Kai1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201847.0103002 Cite this Article
    Ma Yi, Yan Hong, Sun Yinhong, Peng Wanjing, Li Jianmin, Wang Shufeng, Li Tenglong, Wang Yanshan, Tang Chun, Zhang Kai. Recent progress of key technologies for spectral beam combining of fiber laser with dual-gratings configuration(Invited)[J]. Infrared and Laser Engineering, 2018, 47(1): 103002 Copy Citation Text show less
    References

    [1] Gapontsev V, Fomin V, Ferin A, et al. Diffraction limited ultra-high-power fiber lasers[C]//Advanced Solid-State Photonics, OSA Technical Digest Series, OSA, 2010: paper AWA1.

    [2] Michalis N Z, Christophe A C. High power fiber lasers: a review[J]. IEEE Journal of Select Topics in Quantum Electronics, 2014, 20(5): 0904123.

    [3] Bourdon P, Lombard L, Durecu A, et al. Coherent combining of fiber lasers [C]//SPIE, 2017, 10254: 1025402- 1-10.

    [4] Shcherbakov E A, Fomin V V, Abramov A A, et al. Industrial grade 100 kW power CW fiber laser[C]// Advanced Solid-State Lasers Congress Technical Digest, OSA, 2013: ATh4A.

    [5] Madasamy P, Loftus T, Thomas P, et al. Comparison of spectral beam combining approaches for high power fiber laser systems[C]//SPIE, 2008, 6952: 695207-1-10.

    [6] Schmidt O, Wirth C, Nodop D, et al. Spectral beam combination of fiber amplified ns-pulses by means of interference filter[J]. Optics Express, 2009, 17(25): 22974-22982.

    [7] Andrusyak O, Ciapurin I, Smirnov V, et al. External and common-cavity high spectral density beam combining of high power fiber lasers[C]//SPIE, 2008, 6873: 687314-1-8.

    [8] Andrusyak O, Smirnov V, Venus G, et al. Spectral combining and coherent coupling of lasers by volume Bragg gratings[J]. IEEE Journal of Select Topics in Quantum Electronics, 2009, 15(2): 344-353.

    [9] Ott D, Divliansky I, Anderson B, et al. Scaling the spectral beam combining channels in a multiplexed volume Bragg grating[J]. Optics Express, 2013, 21(24): 29620-29627.

    [10] Drachenberg D R, Andrusyak O, Venus G, et al. Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers[J]. Applied Optics, 2014, 53(6): 1242-1246.

    [11] Pu Shibing, Jiang Zongfu, Xu Xiaojun. Numerical analysis of spectral beam combining by volume Bragg grating[J]. High Power Laser and Particle Beams, 2008, 20(5): 721-724. (in Chinese)

    [12] Wang Junzhen, Wang Yuefeng, Bai Huijun. Study on multi-channel spectral beam combined characteristics based on volume Bragg gratings[J]. Laser Technology, 2012, 36(5): 593-596. (in Chinese)

    [13] Liang Xiaobao, Chen Liangming, Li Chao, et al. High average power spectral beam combining employing volume Bragg gratings[J]. High Power Laser and Particle Beams, 2015, 27(7): 071012. (in Chinese)

    [14] Loftus T H, Thomas A M, Hoffman P R, et al. Spectrally beam-combined fiber lasers for high-average-power applications[J]. IEEE Journal of Select Topics in Quantum Electronics, 2007, 13(3): 487-497.

    [15] Wirth C, Schmidt O, Tsybin L I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Opt Lett, 2011, 36(16): 3118-3120.

    [16] Honea E, Afzal R S, Savage-Leuchs M, et al. Spectrally beam combined fiber lasers for high power, efficiency and brightness[C]//SPIE, 2013, 8601: 8601115-1-5.

    [17] Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling[C]//SPIE, 2015, 9730: 97300Y.

    [18] Liu A, Mead R, Vatter T, et al. Spectral beam combining of high power fiber lasers[C]//SPIE, 2004, 5335: 81-88.

    [19] Madasamy P, Jander D, Brooks C, et al. Dual-grating spectral beam combination of high-power fiber lasers[J]. IEEE Journal of Select Topics in Quantum Electronics, 2009, 15(2): 337-343.

    [20] Tian Fei, Yan Hong, Chen Li, et al. Investigation on the influence of spectral linewidth broadening on beam quality in spectral beam combination[C]//SPIE, 2014, 9255: 92553N.

    [21] Ma Yi, Yan Hong, Tian Fei, et al. Common apertures spectral beam combination of fiber lasers with 5 kW power high-efficiency and high-quality output[J]. High Power Laser and Particle Beams, 2015, 27(4): 040101. (in Chinese)

    [22] Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese J Lasers, 2016, 43(9): 0901009. (in Chinese)

    [23] Robin C, Dajani I, Pulford B. Modal instability- suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power[J]. Optics Letters, 2014, 39(3): 666-669.

    [24] Huang L, Wu H, Li R, et al. 414 W near-diffraction- limited all-fiberized single frequency polarization-maintained fiber amplifier[J]. Optics Letters, 2017, 42(1): 1-4.

    [25] Khitrov V, Farley K, Leveille R, et al. kW level narrow linewidth Yb fiber amplifiers for beam combining[C]//SPIE, 2010, 7686: 76860A.

    [26] Engin D, Lu W, Akbulut M, et al. 1 kW CW Yb-fiber- amplifier with <0.5 GHz linewidth and near diffraction limited beam-quality, for coherent combining application[C]//SPIE, 2011, 7914: 791407-1-7.

    [27] Flores A, Robin C, Lanari A, et al. Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers[J]. Optics Express, 2014, 22(15): 17735-17744.

    [28] Huang Z, Liang X, Li C, et al. Spectral broadening in high-power Yb-doped fiber lasers employing narrow-linewidth multilongitudinal-mode oscillators[J]. Applied Optics, 2016, 55(2): 297-302.

    [29] Sun Yihong, Feng Yujun, Li Tenglong, et al. 1.06 kW 13 GHz linewidth all fiber laser[J]. High Power Laser and Particle Beams, 2015, 27(7): 071013. (in Chinese)

    [30] Ma P, Tao R, Su R, et al. 1.89 kW all-fiberized and polarization maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 2016, 24(4): 4187-4195.

    [31] Su R, Tao R, Wang X, et al. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression[J]. Laser Phys Lett, 2017, 14(8):085102.

    [32] Beier F, Hupel C, Nold J, et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbiumdoped low NA fiber amplifier[J]. Optics Express, 2016, 24(6): 6011-6020.

    [33] Platonov N, Yagodkin R, Cruz J, et al. 1.5 kW linear polarized on PM fiber and 2kW on non-PM fiber narrow linewidth CW diffraction-limited fiber amplifier[C]//SPIE, 2017, 10085: 100850M.

    [35] Xu J, Liu W, Leng J, et al. Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW [J]. Optics Letters, 2015, 40(13): 2973-2976.

    [36] Du X, Zhang H, Ma P, et al.Kilowatt-level fiber amplifier with spectral-broadening-free property, seeded by a random fiber laser[J]. Optics Letters, 2015, 40(22): 5311-5314.

    [37] Li Tenglong, Li Yang, Peng Wanjing, et al. 1.1 kW narrowband spectra random fiber laser amplifier[J]. Chinese J Lasers, 2017, 44(2): 0202015. (in Chinese)

    [38] Smith A, Smith J. Mode instability in high power fiber amplifiers[J]. Optics Express, 2011, 19(11): 10180-10912.

    [39] Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. A novel theoretical model for mode instability in high power fiber lasers[C]//Advanced Solid State Laser, 2014: AM5A.20.

    [40] Li Zebiao, Huang Zhihua, Xiang Xiaoyu. Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser[J]. Photonics Research, 2017, 5(2): 77-81.

    [41] Wang Yanshan, Liu Qinyong, Ma Yi, et al. Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers[J]. Ann Phys, 2017, 529(8): 1600398.

    [42] Huang Y, Edgecumbe J, Ding Jianwu, et al. Performance of kW class fiber amplifiers spanning a broad range of wavelengths: 1 028-1 100 nm[C]//SPIE, 2014, 8961: 89612K.

    [43] Yagodkin R, Platonov N, Yusim A, et al. >1.5 kW narrow linewidth CW diffraction-limited fiber amplifier with 40 nm bandwidth[C]//SPIE, 2015, 9728: 972807-1-6.

    [44] Sun Yinhong, Ke Weiwei, Feng Yujun, et al. 1 030 nm kilowatt-level ytterbium-doped narrow linewidth fiber amplifier [J]. Chinese J Lasers, 2016, 43(6): 0601003. (in Chinese)

    [45] Naderi A, Dajani I, Flores A. High-efficiency, kilowatt 1 034 nm all-fiber amplifier operating at 11 pm linewidth[J]. Optics Letters, 2016, 41(5): 1018-1021.

    [46] Chen Hui, Guan Heyuan, Zeng Lijiang, et al.Fabrication of broadband, high-efficiency, metal-multilayer-dielectric gratings[J]. Optics Communications, 2014, 329(2014): 103-108.

    [47] Hu Anduo, Zhou Changhe, Cao Hongchao, et al. Polarization-independent wideband mixed metal dielectric reflective gratings[J]. Applied Optics, 2012, 51(20): 4902-4906.

    [48] Naderi A, Dajani I, Flores A. High-efficiency multilayer dielectric diffraction gratings[J]. Optics Letters, 1995, 20(8): 940-942.

    [49] Clausnitzer T, Limpert J, Zollner K, et al. Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems[J]. Applied Optics, 2003, 42(34): 6934-6938.

    [50] Rumpel M, Moeller M, Moormann C, et al. Broadband pulse compression gratings with measured 99.7% diffraction efficiency[J]. Optics Letters, 2014, 39(2): 323-326.

    [51] Kemme S A, Scrymgeour D A, Peter D W. High-efficiency diffractive optical eements for spectral beam combining[C]//SPIE, 2012, 8381: 83810Q.

    [52] Zheng Ye, Yang Yifeng, Wang Jianhua, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11): 12063-12071.

    [53] Cho H, Kim H, Lee Y. Design and fabrication of multilayer dielectric gratings for spectral beam combining[C]//SPIE, 2015, 9556: 955615-1-6.

    [54] Shen Biyao, Zeng Lijiang, Li Lifeng, et al. Fabrication of polarization independent gratings made on multilayer dielectric thin film substrates[J]. High Power Laser and Particle Beams, 2015, 27(11): 111013. (in Chinese)

    [55] Beresnev L, Motes R, Townes K, et al. Design of a noncooled fiber collimator for compact, high-efficiency fiber laser arrays[J]. Applied Optics, 2017, 56(3): B169-B178.

    [57] Sun Yinhong. Theory and experiment study on fiber laser with high power and narrow linewidth[D]. Mianyang: China Academy of Engineering Physics, 2016: 51-53. (in Chinese)

    [58] Cheung E, Ho J, Goodno G, et al. Diffractive- optics-based beam combination of a phase-locked fiber laser array[J]. Opt Lett, 2008, 33(4): 354-356.

    [59] Thielen P, Ho J, Burchman D, et al. Two-dimensional diffractive coherent combining of 15 fiber amplifiers into a 600 W beam[J]. Opt Lett, 2012, 37(18): 3741-3743.

    [60] Redmond S M, Fan T Y, Ripin D J, et al. Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam[J]. Opt Lett, 2012, 37(14): 2832-2834.

    [61] Flores A, Ehrenreich T, Holten R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light[C]//SPIE, 2015, 9728: 97281Y.

    [62] Goodno G, Shih C, Rothenberg, et al. Perturbative analysis of coherent combining efficiency with mismatched lasers[J]. Optics Express, 2010, 18(24): 25403-25414.

    Ma Yi, Yan Hong, Sun Yinhong, Peng Wanjing, Li Jianmin, Wang Shufeng, Li Tenglong, Wang Yanshan, Tang Chun, Zhang Kai. Recent progress of key technologies for spectral beam combining of fiber laser with dual-gratings configuration(Invited)[J]. Infrared and Laser Engineering, 2018, 47(1): 103002
    Download Citation