• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 3, 631 (2022)
Xu WANG1、2, Cheng-Xiang TU1、3, Liang ZHANG1、2、*, and Jian-Yu WANG1、2、4、**
Author Affiliations
  • 1Key Laboratory of Space Active Opto-Electronics Technology,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • 3School of Information Science and Technology,ShanghaiTech University,Shanghai 201210,China
  • 4Shanghai Quantum Science Research Center,Shanghai 201315,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.03.015 Cite this Article
    Xu WANG, Cheng-Xiang TU, Liang ZHANG, Jian-Yu WANG. Analysis and verification of the positioning accuracy of a flat-panel detector used for precision pointing in space optical communication[J]. Journal of Infrared and Millimeter Waves, 2022, 41(3): 631 Copy Citation Text show less
    References

    [1] S Bai, J Wang, L Zhang. Development progress and trends of space optical communications. Laser & Optoelectronics Progress, 52, 7-20(2015).

    [2] S H Lee. Pointing accuracy improvement using model-based noise reduction method, 4635, 65-71(2002).

    [3] L Liu. Laser communications in Space Ⅱ test and verification techniques on the ground. Chinese journal of lasers, 34, 147-155(2007).

    [4] M Chen, C Liu, D M Rui et al. Experimental results of atmospheric coherent optical communications with adaptive optics. Optics Communications, 434, 91-96(2019).

    [5] K Komatu, S Kanda, K Hirako et al. Laser-beam acquisition and tracking system for ETS-VI laser-communication equipment (LCE), 1218, 96-107(1990).

    [6] M Toyoshima, K Takizawa, T Kuri et al. Ground-to-OICETS laser communication experiments, 6304: 63040B.

    [7] F R Zhang, P Ruan, J F Han. Point ahead angle prediction based on Kalman filtering of optical axis pointing angle in satellite laser communication. Optical Review, 27, 447-454(2020).

    [8] M Toyoshima, H Takenaka, Y Shoji et al. Results of Kirari optical communication demonstration experiments with NICT optical ground station (KODEN) aiming for future classical and quantum communications in space. Acta Astronautica, 74, 40-49(2012).

    [9] L Zhang, J Wang, J Jia et al. Design and Performance of Fine Tracking System Based on CMOS for Quantum Communication. Chinese Journal of Lasers, 38, 0205008(2011).

    [10] L Zhang, J Dai, C Li et al. Design and in-orbit test of a high accuracy pointing method in satellite-to-ground quantum communication. Optics Express, 28, 8291-8307(2020).

    [11] Q Wang, S Y Yu, L Y Tan et al. Approach for recognizing and tracking beacon in inter-satellite optical communication based on optical flow method. Optics Express, 26, 28080-28090(2018).

    [12] M S Bashir, M R Bell. Optical Beam Position Estimation in Free-Space Optical Communication. IEEE Transactions on Aerospace and Electronic Systems, 52, 2896-2905(2016).

    [13] T Ye, F Q Zhou. Autonomous space target recognition and tracking approach using star sensors based on a Kalman filter. Applied Optics, 54, 3455-3469(2015).

    [14] Y Cao, B Li, H Li et al. High-Accuracy Star Sensor Centroid Algorithm Based on Star Image Resampling. Acta Optica Sinica, 39, 0712003(2019).

    [15] F Liu, X Wang, L Zhang. Measurement method of random errors in spot target detection by flat-panel detector. Acta Optica Sinica, 41, 0404001(2021).

    [16] L Jiang, L Zhang, X Zhang et al. Compensation for star centroid systematic error of star trackers. Chinese Journal of Lasers, 42, 0314001-0314011(2015).

    [17] H Sun, S Xu, S Sun et al. Research on Evaluation Method of Optical Imaging Sensors' Photon Response Non-Uniformity Noise,”. Laser & Optoelectronics Progress, 52, 042302(2015).

    [18] S J Chen, L Zhang, J C Wu et al. Realization and optimization of fine tracking system of free space laser communication. Journal Of Infrared And Millimeter Waves, 37, 35-46(2018).

    [19] X Hu, X Mao, Y Wu et al. Pixel frequency error compensation method based on sub-pixel coordinates. Infrared and Laser engineering, 46, 0717006(2017).

    [20] P P Yao, B H Tu, S L Xu et al. Non-uniformity calibration method of space-borne area CCD for directional polarimetric camera. Optics Express, 29, 3309-3326(2021).

    [21] X Z Jian, R Z Lu, Q Guo et al. Single image non-uniformity correction using compressive sensing. Infrared Physics & Technology, 76, 360-364(2016).

    [22] K H Cheng, H X Zhou, H L Qin et al. An improved non-uniformity correction algorithm and its GPU parallel implementation. Infrared Physics & Technology, 90, 156-163(2018).

    [23] J Yang, D W Messinger, R R Dube et al. Fixed Pattern Noise Pixel-wise Linear Correction for Crime Scene Imaging CMOS Sensor(2017).

    [24] J Li, A Mahmoodi, D Joseph. Using Polynomials to Simplify Fixed Pattern Noise and Photometric Correction of Logarithmic CMOS Image Sensors. Sensors, 15, 26331-26352(2015).

    [25] A Boutemedjet, C W Deng, B J Zhao. Edge-Aware Unidirectional Total Variation Model for Stripe Non-Uniformity Correction. Sensors, 18, 1164(2018).

    [26] C H Lu. Stripe non-uniformity correction of infrared images using parameter estimation. Infrared Physics & Technology, 107, 103313(2020).

    [27] Z W He, Y P Cao, Y F Dong et al. Single-image-based nonuniformity correction of uncooled long-wave infrared detectors: a deep-learning approach. Applied Optics, 57, D155-D164(2018).

    [28] J Y Bao, F Xing, T Sun et al. CMOS imager non-uniformity response correction-based high-accuracy spot target localization. Applied Optics, 58, 4560-4568(2019).

    Xu WANG, Cheng-Xiang TU, Liang ZHANG, Jian-Yu WANG. Analysis and verification of the positioning accuracy of a flat-panel detector used for precision pointing in space optical communication[J]. Journal of Infrared and Millimeter Waves, 2022, 41(3): 631
    Download Citation