• Infrared and Laser Engineering
  • Vol. 52, Issue 5, 20230215 (2023)
Senyu Wang, Junsheng Chen, Xinsheng Zhao, Hao Lei, Hongyu Luo, and Jianfeng Li
Author Affiliations
  • State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
  • show less
    DOI: 10.3788/IRLA20230215 Cite this Article
    Senyu Wang, Junsheng Chen, Xinsheng Zhao, Hao Lei, Hongyu Luo, Jianfeng Li. Research progress in 3-5 μm rare earth ion doped mid-infrared fiber lasers (invited)[J]. Infrared and Laser Engineering, 2023, 52(5): 20230215 Copy Citation Text show less
    References

    [1] S D Jackson. Towards high-power mid-infrared emission from a fibre laser. Nature Photonics, 6, 423-431(2012).

    [2] C R Petersen, U Moller, I Kubat, et al. Mid-infrared super-continuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photonics, 8, 830-834(2013).

    [3] U Moller, Y Yu, I Kubat, et al. Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Optics Express, 23, 3282-3291(2015).

    [4] P Werle, F Slemr, K Maurer, et al. Near and mid-infrared laser-optical sensors for gas analysis. Optics and Lasers in Engineering, 37, 101-114(2002).

    [5] J Faist, F Capasso, D L Sivco, et al. Quantum cacsde laser. Science, 264, 553-556(1994).

    [6] N Leindecker, A Marandi, R L Byer, et al. Octave-spanning ultrafast OPO with 2.6-6.1 m instantaneous bandwidth pumped by femtosecond Tm-fiber laser. Optics Express, 20, 7046-7053(2012).

    [7] M E Fermann, I Hartl. Ultrafast fibre lasers. Nature Photonics, 7, 868-874(2013).

    [8] S Antipov, D Hudson, A Fuerbach, et al. High-power mid-infrared femtosecond fiber laser in the water vapor transmission window. Optica, 3, 1373-1376(2016).

    [9] S Duval, M Bernier, V Fortin. Femtosecond fiber laser reach the mid-infrared. Optica, 2, 623-626(2015).

    [10] J Ma, Z Qin, G Xie, et al. Review of mid-infrared mode-locked laser sources in the 2.0 μm-3.5 μm spectral region. Applied Physics Review, 6, 021317(2019).

    [11] S D Jackson. Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser. Applied Physics Letters, 83, 1316-1318(2003).

    [12] Z Y Zhou, Z F Wang, W Huang, et al. Towards high-power mid-IR light source tunable from 3.8 to 4.5 μm by HBr-filled hollow-core silica fibres. Light: Science & Applications, 11, 15(2022).

    [13] P Chang, H Luo, Q Wu, et al. Tunable mid-infrared Raman soliton generation from 2.80 to 3.17 μm based on fluorotellurite fiber. IEEE Photonics Technology Letters, 34, 1183-1186(2022).

    [14] L Liu, T Cheng, K Nagasaka, et al. Coherent mid-infrared supercontinuum generation in all-solid chalcogenide micro-structured fibers with all-normal dispersion. Optics Letters, 41, 392-395(2016).

    [15] H He, Z Jia, T Wang, et al. Intense emission at ~3.3 μm from Er3+ doped fluoroindate glass fiber. Optics Letters, 46, 1057-1060(2021).

    [16] O Henderson-sapir, A Malouf, N Bawden, et al. Recent ad-vances in 3.5 μm erbium-doped mid-infrared fiber lasers. IEEE Journal of Selected Topics in Quantum Electronics, 23, 0900509(2017).

    [17] M R Majewski, R I Woodward, J Y Carreé, et al. Emission beyond 4  μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber. Optics Letters, 43, 1926-1929(2018).

    [18] Y H Tsang, A E El-Taher, T A King, et al. Efficient 2.96 μm dysprosium-doped fluoride fibre laser pumped with a Nd: YAG laser operating at 1.3 m. Optics Express, 14, 678-685(2006).

    [19] M R Majewski, R I Woodward, S D Jackson. Dysprosium mid-infrared lasers: current status and future prospects. Laser & Photonics Reviews, 14, 1900195(2020).

    [20] H Y Luo, J F Li. Progress on mid-infrared mode-locked fluoride fiber lasers. Chinese Journal of Lasers, 49, 0101003(2021).

    [21] S D Jackson, R K Jain. Fiber-based sources of coherent MIR radiation: key advances and future prospects. Optics Express, 28, 30964-31019(2020).

    [22] H Többen. CW lasing at 3.45 μm in erbium-doped fluoro-zirconate fibres. Frequenz, 45, 250-252(1991).

    [23] J Schneider. Fluoride fibre laser operating at 3.9 μm. Electronics Letters, 31, 1250-1251(1995).

    [24] C Carbonnier, H Tobben, U B Unrau. Room temperature CW fibre laser at 3.22 μm. Electronics Letters, 34, 893-894(1998).

    [25] J Wang, X Zhu, R A Norwood, et al. Beyond 3 μm Dy3+/Er3+ co-doped ZBLAN fiber lasers pumped by 976 nm laser diode. Applied Physics Letters, 118, 151101(2021).

    [26] M Z Amin, M R Majewski, R I Woodward, et al. Novel near-infrared pump wavelengths for dysprosium fiber lasers. Journal of Lightwave Technology, 38, 5801-5808(2020).

    [27] M R Majewski, M Z Amin, T Berthelot, et al. Directly diode-pumped mid-infrared dysprosium fiber laser. Optics Letters, 44, 5549-5552(2019).

    [28] V Fortin, F Jobin, M Larose, et al. 10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm. Optics Letters, 44, 491-494(2019).

    [29] F Jobin, P Paradis, Y O Aydin, et al. Recent developments in lanthanide-doped mid-infrared fluoride fiber lasers. Optics Express, 30, 8615-8640(2022).

    [30] O Henderson-sapir, J Munch, D J Ottaway. Mid-infrared fiber lasers at and beyond 3.5 μm using dual wavelength pumping. Optics Letters, 39, 493-496(2014).

    [31] F Maes, V Fortin, M Bernier, et al. 5.6 W monolithic fiber laser at 3.55 μm. Optics Letters, 42, 2054-2057(2017).

    [32] C C Wang, H Luo, J Yang, et al. Watt-level ~3.5 μm Er3+-doped ZrF4 fiber laser using dual-wavelength pumping at 655 and 1 981 nm. IEEE Photonics Technology Letters, 33, 784-787(2021).

    [33] M Lemieux-tanguay, V Fortin, T Boilard, et al. 15 W monolithic fiber laser at 3.55 µm. Optics Letters, 47, 289-292(2022).

    [34] H Luo, Y Wang, J Chen, et al. Red-diode-clad-pumped Er3+/Dy3+ codoped ZrF4 fiber: A promising mid-infrared laser platform. Optics Letters, 47, 5313-5316(2022).

    [35] J Li, D D Hudson, S D Jackson. High-power diode-pumped fiber laser operating at 3 μm. Optics Letters, 36, 3642-3644(2011).

    [36] J Li, D D Hudson, S D Jackson. Tuned cascade laser. IEEE Photonics Technology Letters, 24, 1215-1217(2012).

    [37] F Maes, V Fortin, S Poulain, et al. Room-temperature fiber laser at 3.92 μm. Optica, 5, 761-764(2018).

    [38] M R Majewski, S D Jackson. Highly efficient mid-infrared dysprosium fiber laser. Optics Letters, 41, 2173-2176(2016).

    [39] M R Majewski, S D Jackson. Tunable dysprosium laser. Optics Letters, 41, 4496-4498(2016).

    [40] R I Woodward, M R Majewski, G Bharathan, et al. Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency. Optics Letters, 43, 1471-1474(2018).

    [41] M R Majewski, R I Woodward, S D Jackson. Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm. Optics Letters, 43, 971-974(2018).

    [42] Y Wang, H Luo, H Gong, et al. Watt-level and tunable operations of 3 μm-class dysprosium ZrF4 fiber laser pumped at 1.69 μm. IEEE Photonics Technology Letters, 34, 737-740(2022).

    [43] O Henderson-sapir, S D Jackson, D J Ottaway. Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser. Optics Letters, 41, 1676-1679(2016).

    [44] O Henderson-sapir, J Munch, D J Ottaway. New energy-transfer upconversion process in Er3+: ZBLAN mid-infrared fiber lasers. Optics Express, 24, 6869-6883(2016).

    [45] F Maes, V Fortin, M Bernier, et al. Quenching of 3.4 μm dual-wavelength pumped erbium doped fiber lasers. IEEE Journal of Quantum Electronics, 53, 1-8(2017).

    [46] V Fortin, F Maes, M Bernier, et al. Watt-level erbium-doped all-fiber laser at 3.44 μm. Optics Letters, 41, 559-562(2016).

    [47] Z Qin, G Xie, J Ma, et al. Mid-infrared Er: ZBLAN fiber laser reaching 3.68 μm wavelength. Chinese Optics Letters, 15, 111402(2017).

    [48] F Zhou, J Li, H Luo, et al. Numerical analysis of 3.92 μm dual-wavelength pumped heavily-holmium-doped fluoroindate fiber lasers. Journal of Lightwave Technology, 39, 633-645(2020).

    [49] J Cao, C Wei, H Zhou, et al. Modeling and optimization of cascaded lasing in a holmium doped fluoride fiber laser with efficient output at 3.92 µm. Optics Express, 30, 31623-31633(2022).

    [50] J Yang, J Hu, H Luo, et al. Fe3O4 nanoparticles as a saturable absorber for a tunable Q-switched dysprosium laser around 3 μm. Photonics Research, 8, 70-77(2020).

    [51] Y Wang, H Luo, H Wu, et al. Tunable pulsed dysprosium laser within a continuous range of 545 nm around 3 μm. Journal of Lightwave Technology, 40, 4841-4847(2022).

    [52] N Bawden, H Matsukuma, O Henderson-sapir, et al. Actively Q-switched dual-wavelength pumped Er3+: ZBLAN fiber laser at 3.47 μm. Optics Letters, 43, 2724-2727(2018).

    [53] H Luo, J Yang, J Li, et al. Widely tunable passively Q-switched Er3+-doped ZrF4 fiber laser in the range of 3.4-3.7 μm based on a Fe2+: ZnSe crystal. Photonics Research, 7, 1106-1111(2019).

    [54] F Jobin, P Paradis, V Fortin, et al. 1.4 W in-band pumped Dy3+-doped gain-switched fiber laser at 3.24 µm. Optics Letters, 45, 5028-5031(2020).

    [55] F Jobin, V Fortin, F Maes, et al. Gain-switched fiber laser at 3.55 μm. Optics Letters, 43, 1770-1773(2018).

    [56] H Luo, J Yang, F Liu, et al. Watt-level gain-switched fiber laser at 3.46 μm. Optics Express, 27, 1367-1375(2019).

    [57] J Yang, H Luo, F Liu, et al. Widely tunable gain-switched Er3+-doped ZrF4 fiber laser from 3.4 to 3.7 μm. IEEE Photonics Technology Letters, 32, 1335-1338(2020).

    [58] Y Wang, F Jobin, S Duval, et al. Ultrafast Dy3+: fluoride fiber laser beyond 3 μm. Optics Letters, 44, 395-398(2019).

    [59] R I Woodward, M R Majewski, S D Jackson. Mode-locked dysprosium fiber laser: Picosecond pulse generation from 2.97 to 3.30 µm. APL Photonics, 3, 116106(2018).

    [60] Z Qin, T Hai, G Xie, et al. Black phosphorus Q-switched and mode-locked mid-infrared Er: ZBLAN fiber laser at 3.5 μm wavelength. Optics Express, 26, 8224-8231(2018).

    [61] O Henderson-sapir, N Bawden, M R Majewski, et al. Mode-locked and tunable fiber laser at the 3.5 µm band using frequency-shifted feedback. Optics Letters, 45, 224-227(2020).

    [62] N Bawden, O Henderson-sapir, S D Jackson, et al. Ultrafast 3.5 µm fiber laser. Optics Letters, 46, 1636-1639(2021).

    [63] Bawden N, Matsukuma H, HendersonSapir O, et al. Qswitched dualwavelength pumped 3.5m erbiumdoped infrared fiber laser [C]Fiber Lasers XV: Technology Systems. SPIE, 2018, 10512: 121126.

    [64] Q Guo, Z Qin, Z Wang, et al. Broadly tunable plasmons in doped oxide nanoparticles for ultrafast and broadband mid-infrared all-optical switching. ACS Nano, 12, 12770-12777(2018).

    [65] J Li, Y Yang, D D Hudson, et al. A tunable Q-switched Ho3+-doped fluoride fiber laser. Laser Physics Letters, 10, 045107(2013).

    [66] J Li, H Luo, L Wang, et al. Tunable Fe2+: ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm. Optics Express, 23, 22362-22370(2015).

    Senyu Wang, Junsheng Chen, Xinsheng Zhao, Hao Lei, Hongyu Luo, Jianfeng Li. Research progress in 3-5 μm rare earth ion doped mid-infrared fiber lasers (invited)[J]. Infrared and Laser Engineering, 2023, 52(5): 20230215
    Download Citation