• Laser & Optoelectronics Progress
  • Vol. 54, Issue 8, 83101 (2017)
Qin Xue*, Wang Yan, Yan Xiaona, Zhang Huifang, and He Ying
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.083101 Cite this Article Set citation alerts
    Qin Xue, Wang Yan, Yan Xiaona, Zhang Huifang, He Ying. Transmission Characteristics of Metal Films with Periodically Arrayed Micro-Nano Structures[J]. Laser & Optoelectronics Progress, 2017, 54(8): 83101 Copy Citation Text show less
    References

    [1] Bethe H A. Theory of diffraction by small holes[J]. Physical Review, 1944, 66(7/8): 163-182.

    [2] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667-669.

    [3] Williams S M, Rodriguez K R, Teeters-Kennedy S, et al. Scaffolding for nanotechnology: Extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy[J]. Nanotechnology, 2004, 15(10): S495-S503.

    [4] Enoch S, Popov E, Neviere M, et al. Enhanced light transmission by hole arrays[J]. Journal of Optics A: Pure & Applied Optics, 2002, 4(5): 83-87.

    [5] Lezec H J, Thio T. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays[J]. Optics Express, 2004, 12(16): 3629-3651.

    [6] Liu H, Lalanne P. Microscopic theory of the extraordinary optical transmission[J]. Nature, 2008, 452(7188): 728-731.

    [7] Shi Zhendong, Zhao Haifa, Liu Jianlong, et al. Design of a metallic waveguide all-optical switch based on surface plasmon polaritons[J]. Acta Optica Sinica, 2015, 35(2): 0213001.

    [8] Chen Qin, Wang Huacun, Hu Xin, et al. Spatial light modulator and its applications in free-space optical communications[J]. Laser & Optoelectronics Progress, 2016, 53(5): 050008.

    [9] Sobnack M B, Tan W C, Wanstall N P, et al. Stationary surface plasmons on a zero-order metal grating[J]. Physical Review Letters, 1998, 80(25): 5667-5670.

    [10] Moharam M G, Gaylord T K. Rigorous coupled-wave analysis of planar-grating diffraction[J]. Journal of the Optical Society of America, 1981, 71(7): 811-818.

    [11] Hooper I R, Sambles J R. Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces[J]. Physical Review B, 2004, 70(4): 2199-2208.

    [12] Moharam M G. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach[J]. Journal of the Optical Society of America A, 1995, 12(5): 1077-1086.

    [13] Chen Dewei. Rigorous coupled wave analysis of the diffractive optics[D]. Hefei: University of Science and Technology of China, 2004.

    [14] Hughes T J R, Taylor R L, Kanoknukulchai W. A simple and efficient finite element for plate bending[J]. International Journal for Numerical Methods in Engineering, 1977, 11(10): 1529-1543.

    [15] Pendry J B, Mackinnon A. Calculation of photon dispersion relations[J]. Physical Review Letters, 1992, 69(19): 2772.

    [16] Thompson R C. Optical waves in layered media[J]. Journal of Modern Optics, 1990, 37(1): 147-148.

    [17] Yee K. Numerical solution of initial boundary value problems involving Maxwell′s equations in isotropic media[J]. IEEE Transactions on Antennas & Propagation, 1966, 14(3): 302-307.

    [18] Gao Benqing. The finite difference time domain method[M]. Beijing: National Defense Industry Press, 1995.

    [19] Taflove A, Hagness S C. Computational electrodynamics: The finite-difference time-domain method[M]. Boston: Artech House, 2005.

    [20] Ge Debiao, Yan Yubo. Finite-difference time-domain method for electromagnetic waves[M]. Xi′an: Xi′an University of Electronic Science and Technology Press, 2005.

    [21] Lü Yinghua. The numerical of computer electromagnetism[M]. Beijing: Tsinghua University Press, 2006.

    [22] Jin J M. The finite element method in electromagnetics[M]. Weinheim: Wiley-IEEE Press, 2014: 39-40.

    [23] Ordal M A, Long L L, Bell R J, et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared[J]. Applied Optics, 1983, 22(7): 1099-1119.

    [24] Ordal M A, Bell R J, Alexander R W, et al. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W[J]. Applied Optics, 1985, 24(24): 4493-4499.

    [25] Gai H, Wang J, Tian Q. Modified Debye model parameters of metals applicable for broadband calculations[J]. Applied Optics, 2007, 46(12): 2229-2233.

    [26] Wang Xiaoyan, Wang Yan, Qin Xue, et al. Sub-wavelength surface plasmon polariton waveguide based on ITO characteristics[J]. Laser & Optoelectronics Progress, 2016, 53(5): 052401.

    [27] Martínmoreno L, Garcíavidal F J, Lezec H J, et al. Theory of extraordinary optical transmission through subwavelength hole arrays[J]. Physical Review Letters, 2001, 86(6): 1114-1117.

    Qin Xue, Wang Yan, Yan Xiaona, Zhang Huifang, He Ying. Transmission Characteristics of Metal Films with Periodically Arrayed Micro-Nano Structures[J]. Laser & Optoelectronics Progress, 2017, 54(8): 83101
    Download Citation