• Infrared and Laser Engineering
  • Vol. 51, Issue 6, 20210601 (2022)
Senhao Lou1, Yunmi Huang1、*, Jun Wang2, Yanmin Duan1, Dingyuan Tang2, and Haiyong Zhu1
Author Affiliations
  • 1Wenzhou Key Laboratory of Micro-Nano Optoelectronic Devices, College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
  • 2Key Laboratory for Advanced Laser Materials and Devices of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
  • show less
    DOI: 10.3788/IRLA20210601 Cite this Article
    Senhao Lou, Yunmi Huang, Jun Wang, Yanmin Duan, Dingyuan Tang, Haiyong Zhu. 4F3/2-4I11/2 transition spectra and high efficient laser operation of Nd:Y2O3 transparent ceramic[J]. Infrared and Laser Engineering, 2022, 51(6): 20210601 Copy Citation Text show less
    References

    [1] Z H Xiao, S J Yu, Y M Li, et al. Materials development and potential applications of transparent ceramics: A review. Materials Science and Engineering:R:Reports, 139, 100518(2020).

    [2] C Chen, Q Xu, R Sun, et al. Q-switched mode-locked all-solid-state Tm: LuAG ceramic laser. Infrared and Laser Engineering, 50, 20190563(2021).

    [3] S E Hatch, W F Parsons, R J Weagley, et al. Hot-pressed polycrystalline CaF2: Dy2+ laser. Applied Physics Letters, 5, 153-154(1964).

    [4] H Y Zhu, C W Xu, J Zhang, et al. Highly efficient continuous- wave Nd: YAG ceramic lasers at 946nm. Laser Physics Letters, 10, 075802(2013).

    [5] Y Y Lin, J T Li, H Y Zhu, et al. Multiple weak-line laser operation from Nd: YAG 4F3/2-4I13/2 translation in ceramic and crystal. Acta Physica Sinica, 64, 204204(2015).

    [6] K Serivalsatit, B Kokuoz, M Kennedy, et al. Synthesis, processing, and properties of submicrometer-grained highly transparent yttria ceramics. Journal of the American Ceramic Society, 93, 1320-1325(2010).

    [7] J Wang, J Ma, J Zhang, et al. Yb:Y2O3 transparent ceramics processed with hot isostatic pressing. Optical Materials, 71, 117-120(2017).

    [8] D L Yin, J Ma, P Liu, et al. Submicron-grained Yb:Lu2O3 transparent ceramics with lasing quality. Journal of the American Ceramic Society, 102, 2587-2592(2019).

    [9] J R Lu, J H Lu, T Murai, et al. Nd3+:Y2O3 Ceramic Laser. Japanese Journal of Applied Physics, 40, L1277-L1279(2001).

    [10] M O Hyeon, N K Ha, J P Young, et al. Optical properties and laser performance of Nd: Y2O3 ceramics with fine-grained microstructure. Journal of the European Ceramic Society, 41, 4419-4423(2021).

    [11] L Zhang, W Pan. Structural and thermo-mechanical properties of Nd: Y2O3 transparent ceramics. Journal of the American Ceramic Society, 98, 3326-3331(2015).

    [12] X R Zhang, G F Fan, X H Wang, et al. Effects of sintering parameters and Nd doping on the microwave dielectric properties of Y2O3 ceramics. Ceramics International, 42, 7962-7967(2016).

    [13] L Gan, Y J Park, H Kim, et al. Fabrication and microstructure of hot pressed laminated Y2O3/Nd:Y2O3/Y2O3 transparent ceramics. Journal of the European Ceramic Society, 36, 911-916(2016).

    [14] D L Yin, J Wang, P Liu, et al. Fabrication and microstructural characterizations of lasing grade Nd:Y2O3 ceramics. Journal of the American Ceramic Society, 102, 7462-7468(2019).

    [15] H Y Zhu, Y C Zhang, Y M Duan, et al. Highly efficient CW operation of a diode pumped Nd:Y2O3 ceramic laser. Optical Materials Express, 8, 3518-3525(2018).

    [16] C W Xu, C D Yang, H Zhang, et al. Efficient laser operation based on transparent Nd:Lu2O3 ceramic fabricated by spark plasma sintering. Optics Express, 24, 20571-20579(2016).

    [17] B M Walsh, J M McMahon, W C Edwards, et al. Spectroscopic characterization of Nd:Y2O3: application toward a differential absorption lidar system for remote sensing of ozone. Journal of the Optical Society of American B, 19, 2893-2903(2002).

    [18] W Liu, D Zhang, Y Zeng, et al. Diode-side-pumped 1123 nm Nd:YAG ceramic laser. Ceramics International, 38, 6969-6973(2012).

    [19] H N Zhang, X H Chen, Q P Wang, et al. Continuous-wave dual-wavelength Nd:YAG ceramic laser at 1112 and 1116 nm. Chinese Physics Letters, 30, 4202(2013).

    [20] X Pan, H Y Zhu, Y M Duan, et al. Diode-end-pumped Nd:YAG ceramic and crystal operation at 1123 nm. Journal of Russian Laser Research, 34, 458-462(2013).

    [21] R Paschotta, N Moore, W A Clarkson, et al. 230 mW of blue light from a thulium doped upconversion fiber laser. IEEE Journal of Selected Topics in Quantum Electronit’s, 4, 1100-1102(1997).

    [22] J T Zhou, J X Huang, L Li. Nd:GGG laser at 1110 nm and frequency-doubled laser at 555 nm. Infrared and Laser Engineering, 44, 867-871(2015).

    [23] W Telford, Murga, M Hawley, et al. DPSS yellow-green 561 nm lasers for improved fluorochrome detection by flow cytometry. Cytometry Part A, 68, 36-44(2005).

    Senhao Lou, Yunmi Huang, Jun Wang, Yanmin Duan, Dingyuan Tang, Haiyong Zhu. 4F3/2-4I11/2 transition spectra and high efficient laser operation of Nd:Y2O3 transparent ceramic[J]. Infrared and Laser Engineering, 2022, 51(6): 20210601
    Download Citation