• Journal of Semiconductors
  • Vol. 44, Issue 4, 041901 (2023)
Yuanfei Gao1, Jia-Min Lai2,3, and Jun Zhang2,3,*
Author Affiliations
  • 1Beijing Academy of Quantum Information Sciences, Beijing 100193, China
  • 2State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Beijing 100083, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/44/4/041901 Cite this Article
    Yuanfei Gao, Jia-Min Lai, Jun Zhang. Phonon-assisted upconversion photoluminescence of quantum emitters[J]. Journal of Semiconductors, 2023, 44(4): 041901 Copy Citation Text show less
    References

    [1] I Aharonovich, D Englund, M Toth. Solid-state single-photon emitters. Nat Photonics, 10, 631(2016).

    [2] W B Gao, A Imamoglu, H Bernien et al. Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nat Photonics, 9, 363(2015).

    [3] M Atatüre, D Englund, N Vamivakas et al. Material platforms for spin-based photonic quantum technologies. Nat Rev Mater, 3, 38(2018).

    [4] D D Awschalom, R Hanson, J Wrachtrup et al. Quantum technologies with optically interfaced solid-state spins. Nat Photonics, 12, 516(2018).

    [5] S L Ren, Q H Tan, J Zhang. Review on the quantum emitters in two-dimensional materials. J Semicond, 40, 071903(2019).

    [6] J W Fan, I Cojocaru, J Becker et al. Germanium-vacancy color center in diamond as a temperature sensor. ACS Photonics, 5, 765(2018).

    [7] Y F Gao, J M Lai, Y J Sun et al. Charge state manipulation of NV centers in diamond under phonon-assisted anti-stokes excitation of NV0. ACS Photonics, 9, 1605(2022).

    [8] X J Xia, A Pant, A S Ganas et al. Quantum point defects for solid-state laser refrigeration. Adv Mater, 33, e1905406(2021).

    [9] S A Empedocles, M G Bawendi. Quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science, 278, 2114(1997).

    [10] T T Tran, B Regan, E A Ekimov. Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry. Sci Adv, 5, eaav9180(2019).

    [11] N Mendelson, D Chugh, J R Reimers et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nat Mater, 20, 321(2021).

    [12] J M Lai, Y J Sun, Q H Tan et al. Laser cooling of a lattice vibration in van der waals semiconductor. Nano Lett, 22, 7129(2022).

    [13] F Wang, R R Deng, J Wang et al. Tuning upconversion through energy migration in core-shell nanoparticles. Nat Mater, 10, 968(2011).

    [14] J Zhang, D H Li, R J Chen et al. Laser cooling of a semiconductor by 40 Kelvin. Nature, 493, 504(2013).

    [15] Z X Gan, X L Wu, G X Zhou et al. Is there real upconversion photoluminescence from graphene quantum dots. Adv Opt Mater, 1, 554(2013).

    [16] J P Tetienne, N Dontschuk, D A Broadway et al. Quantum imaging of current flow in graphene. Sci Adv, 3, e1602429(2017).

    [17] B C Rose, D Huang, Z H Zhang et al. Observation of an environmentally insensitive solid-state spin defect in diamond. Science, 361, 60(2018).

    [18] C P Anderson, A Bourassa, K C Miao et al. Electrical and optical control of single spins integrated in scalable semiconductor devices. Science, 366, 1225(2019).

    [19] J Michl, T Teraji, S Zaiser et al. Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces. Appl Phys Lett, 104, 102407(2014).

    [20] C E Bradley, J Randall, M H Abobeih et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys Rev X, 9, 031045(2019).

    [21] W F Koehl, B B Buckley, F J Heremans et al. Room temperature coherent control of defect spin qubits in silicon carbide. Nature, 479, 84(2011).

    [22] D J Christle, A L Falk, P Andrich et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat Mater, 14, 160(2015).

    [23] M Widmann, S Y Lee, T Rendler et al. Coherent control of single spins in silicon carbide at room temperature. Nat Mater, 14, 164(2015).

    [24] M Kern, J Jeske, D W M Lau et al. Optical cryocooling of diamond. Phys Rev B, 95, 235306(2017).

    [25] Y F Gao, Q H Tan, X L Liu et al. Phonon-assisted photoluminescence up-conversion of silicon-vacancy centers in diamond. J Phys Chem Lett, 9, 6656(2018).

    [26] S A Tawfik, S Ali, M Fronzi et al. First-principles investigation of quantum emission from hBN defects. Nanoscale, 9, 13575(2017).

    [27] N Nikolay, N Mendelson, E Özelci et al. Direct measurement of quantum efficiency of single-photon emitters in hexagonal boron nitride. OPTICA, 6, 1084(2019).

    [28] G Grosso, H Moon, B Lienhard et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat Commun, 8, 705(2017).

    [29] A L Exarhos, D A Hopper, R N Patel et al. Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat Commun, 10, 222(2019).

    [30] A Dietrich, M Bürk, E S Steiger et al. Reply to “Comment on ‘Observation of Fourier transform limited lines in hexagonal boron nitride’”. Phys Rev B, 100, 047402(2019).

    [31] G Noh, D Choi, J H Kim et al. Stark tuning of single-photon emitters in hexagonal boron nitride. Nano Lett, 18, 4710(2018).

    [32] T T Tran, C Bradac, A S Solntsev et al. Suppression of spectral diffusion by anti-Stokes excitation of quantum emitters in hexagonal boron nitride. Appl Phys Lett, 115, 071102(2019).

    [33] N Tomm, A Javadi, N O Antoniadis et al. A bright and fast source of coherent single photons. Nat Nanotechnol, 16, 399(2021).

    [34] P Senellart, G Solomon, A White. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol, 12, 1026(2017).

    [35] R Uppu, L Midolo, X Y Zhou et al. Quantum-dot-based deterministic photon-emitter interfaces for scalable photonic quantum technology. Nat Nanotechnol, 16, 1308(2021).

    [36] C H H Schulte, J Hansom, A E Jones et al. Quadrature squeezed photons from a two-level system. Nature, 525, 222(2015).

    [37] Y He, Y M He, J Liu et al. Dynamically controlled resonance fluorescence spectra from a doubly dressed single InGaAs quantum dot. Phys Rev Lett, 114, 097402(2015).

    [38] S F Liu, Y M Wei, X S Li et al. Dual-resonance enhanced quantum light-matter interactions in deterministically coupled quantum-dot-micropillars. Light Sci Appl, 10, 158(2021).

    [39] G Nemova, R Kashyap. Laser cooling of solids. Rep Prog Phys, 73, 086501(2010).

    [40] M Sheik-Bahae, R I Epstein. Laser cooling of solids [Laser Photon. Rev. 3, No. 1-2, 67-84 (2009)]. Laser Photonics Rev, 3, 406(2009).

    [41] N Akizuki, A T Shun, S Mouri et al. Efficient near-infrared up-conversion photoluminescence in carbon nanotubes. Nat Commun, 6, 8920(2015).

    [42] A M Jones, H Y Yu, J R Schaibley et al. Excitonic luminescence upconversion in a two-dimensional semiconductor. Nat Phys, 12, 323(2016).

    [43] Q X Wang, Q Zhang, X X Zhao et al. Photoluminescence upconversion by defects in hexagonal boron nitride. Nano Lett, 18, 6898(2018).

    [44] R N E Malein, P Khatri, A J Ramsay et al. Stimulated emission depletion spectroscopy of color centers in hexagonal boron nitride. ACS Photonics, 8, 1007(2021).

    [45] G Grosso, H Moon, C J Ciccarino et al. Low-temperature electron-phonon interaction of quantum emitters in hexagonal boron nitride. ACS Photonics, 7, 1410(2020).

    [46] M Hoese, P Reddy, A Dietrich et al. Mechanical decoupling of quantum emitters in hexagonal boron nitride from low-energy phonon modes. Sci Adv, 6, eaba6038(2020).

    [47] J Jadczak, L Bryja, J Kutrowska-Girzycka et al. Room temperature multi-phonon upconversion photoluminescence in monolayer semiconductor WS2. Nat Commun, 10, 107(2019).

    [48] P Siyushev, M Nesladek, E Bourgeois et al. Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond. Science, 363, 728(2019).

    [49] J R Weber, W F Koehl, J B Varley et al. Quantum computing with defects. Proc Natl Acad Sci USA, 107, 8513(2010).

    [50] M J Crane, A Petrone, R A Beck et al. High-pressure, high-temperature molecular doping of nanodiamond. Sci Adv, 5, eaau6073(2019).

    [51] A T M A Rahman, P F Barker. Laser refrigeration, alignment and rotation of levitated Yb3+: LF nanocrystals. Nat Photonics, 11, 634(2017).

    [52] A Mohtashami, A Femius Koenderink. Suitability of nanodiamond nitrogen-vacancy centers for spontaneous emission control experiments. New J Phys, 15, 043017(2013).

    [53] T M Sweeney, S G Carter, A S Bracker et al. Cavity-stimulated Raman emission from a single quantum dot spin. Nat Photonics, 8, 442(2014).

    [54] R I Epstein, M I Buchwald, B C Edwards et al. Observation of laser-induced fluorescent cooling of a solid. Nature, 377, 500(1995).

    [55] C L Evans, E O Potma, M Puoris'haag et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc Natl Acad Sci USA, 102, 16807(2005).

    [56] C H Camp Jr, M T Cicerone. Chemically sensitive bioimaging with coherent Raman scattering. Nat Photonics, 9, 295(2015).

    [57] M Alkahtani, I Cojocaru, X H Liu et al. Tin-vacancy in diamonds for luminescent thermometry. Appl Phys Lett, 112, 241902(2018).

    [58] C T Nguyen, R E Evans, A Sipahigil et al. All-optical nanoscale thermometry with silicon-vacancy centers in diamond. Appl Phys Lett, 112, 203102(2018).

    [59] T Plakhotnik, H Aman, H C Chang. All-optical single-nanoparticle ratiometric thermometry with a noise floor of 0.3 K Hz-1/2. Nanotechnology, 26, 245501(2015).

    [60] R C Maher, L F Cohen, J C Gallop et al. Temperature-dependent anti-stokes/stokes ratios under surface-enhanced Raman scattering conditions. J Phys Chem B, 110, 6797(2006).

    [61] L Song, L J Ci, H Lu et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett, 10, 3209(2010).

    [62] G Sallen, A Tribu, T Aichele et al. Subnanosecond spectral diffusion measurement using photon correlation. Nat Photonics, 4, 696(2010).

    [63] D Wigger, R Schmidt, O Del Pozo-Zamudio et al. Phonon-assisted emission and absorption of individual color centers in hexagonal boron nitride. 2D Mater, 6, 035006(2019).

    [64] Z K Ye, X Lin, N Wang et al. Phonon-assisted up-conversion photoluminescence of quantum dots. Nat Commun, 12, 4283(2021).

    [65] Y V Morozov, S B Zhang, A Pant et al. Can lasers really refrigerate CdS nanobelts. Nature, 570, E60(2019).

    [66] F Jelezko, T Gaebel, I Popa et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys Rev Lett, 93, 130501(2004).

    [67] P B Li, Z L Xiang, P Rabl et al. Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes. Phys Rev Lett, 117, 015502(2016).

    [68] N Lo Piparo, M Razavi, W J Munro. Measurement-device-independent quantum key distribution with nitrogen vacancy centers in diamond. Phys Rev A, 95, 022338(2017).

    [69] P Reineck, M Capelli, D M Lau et al. Bright and photostable nitrogen-vacancy fluorescence from unprocessed detonation nanodiamond. Nanoscale, 9, 497(2017).

    [70] V M Acosta, E Bauch, M P Ledbetter et al. Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Phys Rev B, 80, 115202(2009).

    [71] K Beha, A Batalov, N B Manson et al. Optimum photoluminescence excitation and recharging cycle of single nitrogen-vacancy centers in ultrapure diamond. Phys Rev Lett, 109, 097404(2012).

    [72] J F Wang, F F Yan, Q Li et al. Robust coherent control of solid-state spin qubits using anti-Stokes excitation. Nat Commun, 12, 3223(2021).

    [73] B Hensen, H Bernien, A E Dréau et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 526, 682(2015).

    [74] N Kalb, A A Reiserer, P C Humphreys et al. Entanglement distillation between solid-state quantum network nodes. Science, 356, 928(2017).

    [75] P C Humphreys, N Kalb, J P J Morits et al. Deterministic delivery of remote entanglement on a quantum network. Nature, 558, 268(2018).

    [76] Ö O Soykal, P Dev, S E Economou. Silicon vacancy center in 4H-SiC: Electronic structure and spin-photon interfaces. Phys Rev B, 93, 081207(2016).

    [77] Y Takahashi, Y Inui, M Chihara et al. A micrometre-scale Raman silicon laser with a microwatt threshold. Nature, 498, 470(2013).

    [78] X Y Lu, G Moille, Q Li et al. Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics. Nat Photonics, 13, 593(2019).

    [79] G Marty, S Combrié, F Raineri et al. Photonic crystal optical parametric oscillator. Nat Photonics, 15, 53(2021).

    [80] J Zhang, Q Zhang, X Z Wang et al. Resolved-sideband Raman cooling of an optical phonon in semiconductor materials. Nat Photonics, 10, 600(2016).

    Yuanfei Gao, Jia-Min Lai, Jun Zhang. Phonon-assisted upconversion photoluminescence of quantum emitters[J]. Journal of Semiconductors, 2023, 44(4): 041901
    Download Citation