• Infrared and Laser Engineering
  • Vol. 54, Issue 3, 20240620 (2025)
Lei YANG, Haoran XIONG, Hanming WU, Shendong LIU..., Yongtian WANG and Lingling HUANG*|Show fewer author(s)
Author Affiliations
  • Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.3788/IRLA20240620 Cite this Article
    Lei YANG, Haoran XIONG, Hanming WU, Shendong LIU, Yongtian WANG, Lingling HUANG. Progress and applications of reconfigurable metasurfaces (invited)[J]. Infrared and Laser Engineering, 2025, 54(3): 20240620 Copy Citation Text show less
    References

    [1] R A SHELBY, D R SMITH, S SCHULTZ. Experimental verification of a negative index of refraction. Science, 292, 77-79(2001).

    [2] D R SMITH, W J PADILLA, D C VIER et al. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84, 4184-4187(2000).

    [3] Z YANG, J MEI, M YANG et al. Membrane-type acoustic metamaterial with negative dynamic mass. Physical Review Letters, 101, 204301(2008).

    [4] N YU, P GENEVET, M A KATS et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [5] A V KILDISHEV, A BOLTASSEVA, V M SHALAEV. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [6] E ALMEIDA, G SHALEM, Y PRIOR. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces. Nature Communications, 7, 10367(2016).

    [7] P GENEVET, N YU, F AIETA et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Applied Physics Letters, 100, 013101(2012).

    [8] S SUN, K Y YANG, C M WANG et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Letters, 12, 6223-6229(2012).

    [9] M KHORASANINEJAD, F CAPASSO. Metalenses: Versatile multifunctional photonic components. Science, 358, eaam8100(2017).

    [10] X ZHANG, Z LIU. Superlenses to overcome the diffraction limit. Nature Materials, 7, 435-441(2008).

    [11] L LI, H RUAN, C LIU et al. Machine-learning reprogrammable metasurface imager. Nature Communications, 10, 1082(2019).

    [12] A KOMAR, R A AONI, L XU et al. Edge detection with Mie-resonant dielectric metasurfaces. ACS Photonics, 8, 864-871(2021).

    [13] H ZHENG, Q LIU, I I KRAVCHENKO et al. Multichannel meta-imagers for accelerating machine vision. Nature Nanotechnology, 19, 471-478(2024).

    [14] L HUANG, X CHEN, H MÜHLENBERND et al. Dispersionless phase discontinuities for controlling light propagation. Nano Letters, 12, 5750-5755(2012).

    [15] G ZHENG, H MÜHLENBERND, M KENNEY et al. Metasurface holograms reaching 80% efficiency. Nature Nanotechnology, 10, 308-312(2015).

    [16] Q JIANG, G JIN, L CAO. When metasurface meets hologram: Principle and advances. Advances in Optics and Photonics, 11, 518-576(2019).

    [17] Y YIN, Q JIANG, H WANG et al. Multi‐dimensional multiplexed metasurface holography by inverse design. Advanced Materials, 36, 2312303(2024).

    [18] P YU, J LI, N LIU. Electrically tunable optical metasurfaces for dynamic polarization conversion. Nano Letters, 21, 6690-6695(2021).

    [19] DE GALARRETA C RUIZ, I SINEV, A M ALEXEEV et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica, 7, 476-484(2020).

    [20] J KING, C WAN, T J PARK et al. Electrically tunable VO2–metal metasurface for mid-infrared switching, limiting and nonlinear isolation. Nature Photonics, 18, 74-80(2024).

    [21] P GUTRUF, C ZOU, W WITHAYACHUMNANKUL et al. Mechanically tunable dielectric resonator metasurfaces at visible frequencies. ACS Nano, 10, 133-141(2016).

    [22] J YU, S PARK, I HWANG et al. Electrically tunable nonlinear polaritonic metasurface. Nature Photonics, 16, 72-78(2022).

    [23] S PARK, J YU, G BOEHM et al. Electrically tunable third-harmonic generation using intersubband polaritonic metasurfaces. Light: Science & Applications, 13, 169(2024).

    [24] Y NI, C CHEN, S WEN et al. Computational spectropolarimetry with a tunable liquid crystal metasurface. eLight, 2, 23(2022).

    [25] I KIM, M A ANSARI, M Q MEHMOOD et al. Stimuli‐responsive dynamic metaholographic displays with designer liquid crystal modulators. Advanced Materials, 32, 2004664(2020).

    [26] J LI, P YU, S ZHANG et al. Electrically-controlled digital metasurface device for light projection displays. Nature Communications, 11, 3574(2020).

    [27] Y W HUANG, H W H LEE, R SOKHOYAN et al. Gate-tunable conducting oxide metasurfaces. Nano Letters, 16, 5319-5325(2016).

    [28] G K SHIRMANESH, R SOKHOYAN, P C WU et al. Electro-optically tunable multifunctional metasurfaces. ACS Nano, 14, 6912-6920(2020).

    [29] S I KIM, J PARK, B G JEONG et al. Two-dimensional beam steering with tunable metasurface in infrared regime. Nanophotonics, 11, 2719-2726(2022).

    [30] A FOROUZMAND, H MOSALLAEI. A tunable semiconductor‐based transmissive metasurface: Dynamic phase control with high transmission level. Laser & Photonics Reviews, 14, 1900353(2020).

    [31] C ZENG, H LU, D MAO et al. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electronic Advances, 5, 200098(2022).

    [32] J ZHANG, X WEI, I D RUKHLENKO et al. Electrically tunable metasurface with independent frequency and amplitude modulations. ACS Photonics, 7, 265-271(2020).

    [33] J SUN, E TIMURDOGAN, A YAACOBI et al. Large-scale nanophotonic phased array. Nature, 493, 195-199(2013).

    [34] A ARCHETTI, R J LIN, N RESTORI et al. Thermally reconfigurable metalens. Nanophotonics, 11, 3969-3980(2022).

    [35] P P IYER, M PENDHARKAR, C J PALMSTRØM et al. Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates. Nature Communications, 8, 472(2017).

    [36] A KOMAR, R PANIAGUA-DOMíNGUEZ, M A MIROSHNICHENKO et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces. ACS Photonics, 5, 1742-1748(2018).

    [37] K Z KAMALI, L XU, N GAGRANI et al. Electrically programmable solid-state metasurfaces via flash localised heating. Light: Science & Applications, 12, 40(2023).

    [38] B CHEN, S YANG, J CHEN et al. Directional terahertz holography with thermally active Janus metasurface. Light: Science & Applications, 12, 136(2023).

    [39] B DONG, S ZHU, G GUO et al. Switchable pancharatnam–berry phases in heterogeneously integrated THz metasurfaces. Advanced Materials, 37, 2417183(2024).

    [40] S ABDOLLAHRAMEZANI, O HEMMATYAR, M TAGHINEJAD et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nature Communications, 13, 1696(2022).

    [41] Y ZHANG, C FOWLER, J LIANG et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nature Nanotechnology, 16, 661-666(2021).

    [42] N M ESTAKHRI, T B NORRIS. Tunable quantum two-photon interference with reconfigurable metasurfaces using phase-change materials. Optics Express, 29, 14245-14259(2021).

    [43] K V SREEKANTH, J PERUMAL, U S DINISH et al. Tunable tamm plasmon cavity as a scalable biosensing platform for surface enhanced resonance Raman spectroscopy. Nature Communications, 14, 7085(2023).

    [44] H YUAN, Z ZHONG, B ZHANG. Visible-frequency nonvolatile reconfigurable Janus metasurfaces for dual-wavelength-switched and spin-asymmetric holograms. Photonics Research, 12, 356(2024).

    [45] S L WALDEN, P POUDEL, C ZOU et al. Two-color spatially resolved tuning of Polymer-Coated metasurfaces. ACS Nano, 18, 5079-5088(2024).

    [46] L CONG, Y K SRIVASTAVA, H ZHANG et al. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting. Light: Science & Applications, 7, 28(2018).

    [47] Q WANG, E T F ROGERS, B GHOLIPOUR et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nature Photonics, 10, 60-65(2016).

    [48] A SMOLYANINOV, AMILI A EL, F VALLINI et al. Programmable plasmonic phase modulation of free-space wavefronts at gigahertz rates. Nature Photonics, 13, 431-435(2019).

    [49] M R SHCHERBAKOV, S LIU, V V ZUBYUK et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nature Communications, 8, 17(2017).

    [50] H WEIGAND, V V VOGLER-NEULING, M R ESCALÉ et al. Enhanced electro-optic modulation in resonant metasurfaces of lithium niobate. ACS Photonics, 8, 3004-3009(2021).

    [51] T LI, Q WEI, B REINEKE et al. Reconfigurable metasurface hologram by utilizing addressable dynamic pixels. Optics Express, 27, 21153-21162(2019).

    [52] J EAVES-RATHERT, E KOVALIK, C F UGWU et al. Dynamic color tuning with electrochemically actuated TiO2 metasurfaces. Nano Letters, 22, 1626-1632(2022).

    [53] E KOVALIK, J EAVES-RATHERT, C L PINT et al. Low-power electrochemical modulation of silicon-based metasurfaces. ACS Photonics, 11, 445-451(2024).

    [54] S LEE, D JEONG, S KK et al. Plasmonic polymer nanoantenna arrays for electrically tunable and electrode-free metasurfaces. Journal of Materials Chemistry A, 11, 21569-21576(2023).

    [55] J KARST, Y LEE, M FLOESS et al. Electro-active metaobjective from metalenses-on-demand. Nature Communications, 13, 7183(2022).

    [56] H S EE, R AGARWAL. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Letters, 16, 2818-2823(2016).

    [57] S SONG, X MA, M PU et al. Actively tunable structural color rendering with tensile substrate. Advanced Optical Materials, 5, 1600829(2017).

    [58] C MENG, P C V THRANE, F DING et al. Full-range birefringence control with piezoelectric MEMS-based metasurfaces. Nature Communications, 13, 2071(2022).

    [59] H KWON, T ZHENG, A FARAON. Nano-electromechanical spatial light modulator enabled by asymmetric resonant dielectric metasurfaces. Nature Communications, 13, 5811(2022).

    [60] Y DENG, C MENG, P C V THRANE et al. MEMS-integrated metasurfaces for dynamic linear polarizers. Optica, 11, 326-332(2024).

    [61] C MENG, P C V THRANE, C WANG et al. MEMS-tunable topological bilayer metasurfaces for reconfigurable dual-state phase control. Optica, 11, 1556-1566(2024).

    [62] C WANG, C MENG, X MEI et al. MEMS-metasurface–enabled mode-switchable vortex lasers. Science Advances, 10, eadq6299(2024).

    [63] S Q LI, X XU, R M VEETIL et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 364, 1087-1090(2019).

    [64] S MANSHA, P MOITRA, X XU et al. High resolution multispectral spatial light modulators based on tunable Fabry-Perot nanocavities. Light: Science & Applications, 11, 141(2022).

    [65] S ZHU, Q JIANG, Y WANG et al. Nonmechanical varifocal metalens using nematic liquid crystal. Nanophotonics, 12, 1169-1176(2023).

    [66] X OU, T ZENG, Y ZHANG et al. Tunable polarization-multiplexed achromatic dielectric metalens. Nano Letters, 22, 10049-10056(2022).

    [67] C DAI, Z WANG, Y SHI et al. Scalable hydrogel-based nanocavities for switchable meta-holography with dynamic color printing. Nano Letters, 22, 9990-9996(2022).

    [68] L YANG, X HONG, J LI et al. Rechargeable metasurfaces for dynamic color display based on a compositional and mechanical dual-altered mechanism. Research, 2022, 9828757(2022).

    [69] T BADLOE, I KIM, Y KIM et al. Electrically tunable bifocal metalens with diffraction‐limited focusing and imaging at visible wavelengths. Advanced Science, 8, 2102646(2021).

    [70] S DOSHI, A JI, A I MAHDI et al. Electrochemically mutable soft metasurfaces. Nature Materials, 24, 205-211(2024).

    [71] S ZHU, B DONG, G GUO et al. Terahertz metasurfaces for thermally controlled optical encryption. Laser & Photonics Reviews, 17, 2300233(2023).

    [72] I KIM, W S KIM, K KIM et al. Holographic metasurface gas sensors for instantaneous visual alarms. Science Advances, 7, eabe9943(2021).

    [73] M COTRUFO, S B SULEJMAN, L WESEMANN et al. Reconfigurable image processing metasurfaces with phase-change materials. Nature Communications, 15, 4483(2024).

    [74] X ZHANG, Y ZHOU, H ZHENG et al. Reconfigurable metasurface for image processing. Nano Letters, 21, 8715-8722(2021).

    [75] I KHODASEVYCH, L WESEMANN, A ROBERTS et al. Tunable nonlocal metasurfaces based on graphene for analogue optical computation. Optical Materials Express, 13, 1475(2023).

    [76] C LIU, Q MA, Z J LUO et al. A programmable diffractive deep neural network based on a digital-coding metasurface array. Nature Electronics, 5, 113-122(2022).

    [77] P MOITRA, X XU, R M VEETIL et al. Electrically tunable reflective metasurfaces with continuous and full-phase modulation for high-efficiency wavefront control at visible frequencies. ACS Nano, 17, 16952-16959(2023).

    [78] H AI, Q KANG, W WANG et al. Multi-beam steering for 6G communications based on graphene metasurfaces. Sensors, 21, 4784(2021).

    [79] L ZHANG, M Z CHEN, W TANG et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nature Electronics, 4, 218-227(2021).

    [80] Z X WANG, J W WU, H Q YANG et al. A hybrid architecture for programmable meta‐system using a few active elements. Laser & Photonics Reviews, 18, 2400062(2024).

    [81] J C ZHANG, G B WU, M K CHEN et al. A 6G meta-device for 3D varifocal. Science Advances, 9, eadf8478(2023).

    [82] H ZENG, X CONG, H ZHANG et al. Dynamically logical modulation for THz wave within a dual gate–controlled 2DEG metasurface. Science Advances, 10, eadr1448(2024).

    [83] J XIONG, X CAI, K CUI et al. Dynamic brain spectrum acquired by a real-time ultraspectral imaging chip with reconfigurable metasurfaces. Optica, 9, 461-468(2022).

    [84] G Z ZHOU, B J CHEN, G B WU et al. All-plasmonic optical leaky-wave antenna with a low sidelobe level. Photonics Research, 11, 1500(2023).

    [85] G CAI, Y LI, Y ZHANG et al. Compact angle-resolved metasurface spectrometer. Nature Materials, 23, 71-78(2024).

    [86] E KHAIDAROV, D ESCHIMESE, K H LAI et al. Large-scale vivid metasurface color printing using advanced 12-in. immersion photolithography. Scientific Reports, 12, 14044(2022).

    [87] J KIM, J SEONG, W KIM et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible. Nature Materials, 22, 474-481(2023).

    [88] T W PARK, M BYUN, H JUNG et al. Thermally assisted nanotransfer printing with sub–20-nm resolution and 8-inch wafer scalability. Science Advances, 6, eabb6462(2020).

    [89] T W PARK, Y L KANG, Y N KIM et al. High-resolution nanotransfer printing of porous crossbar array using patterned metal molds by extreme-pressure imprint lithography. Nanomaterials, 13, 2335(2023).

    [90] G YOON, K KIM, D HUH et al. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nature Communications, 11, 2268(2020).

    [91] P DAINESE, L MARRA, D CASSARA et al. Shape optimization for high efficiency metasurfaces: theory and implementation. Light: Science & Applications, 13, 300(2024).

    [92] Y XU, J YANG, K FAN et al. Physics‐informed inverse design of programmable metasurfaces. Advanced Science, 11, 2406878(2024).

    Lei YANG, Haoran XIONG, Hanming WU, Shendong LIU, Yongtian WANG, Lingling HUANG. Progress and applications of reconfigurable metasurfaces (invited)[J]. Infrared and Laser Engineering, 2025, 54(3): 20240620
    Download Citation