• Chinese Optics Letters
  • Vol. 20, Issue 6, 061401 (2022)
Yingrun Fan1、2, Jinlong Xiao2、3、*, Zhengzheng Shen2、3, Youzeng Hao2、3, Jiachen Liu2、3, Ke Yang2、3, Yuede Yang2、3, and Yongzhen Huang1、2、3
Author Affiliations
  • 1School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
  • 2State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/COL202220.061401 Cite this Article Set citation alerts
    Yingrun Fan, Jinlong Xiao, Zhengzheng Shen, Youzeng Hao, Jiachen Liu, Ke Yang, Yuede Yang, Yongzhen Huang. 1.65 µm square-FP coupled cavity semiconductor laser for methane gas detection[J]. Chinese Optics Letters, 2022, 20(6): 061401 Copy Citation Text show less
    References

    [1] D. F. Swineharf. The Beer–Lambert law. J. Chem. Educ., 39, 333(1962).

    [2] P. Werle. A review of recent advances in semiconductor laser based gas monitors. Spectrochim. Acta A Mol. Biomol. Spectrosc., 54, 197(1998).

    [3] P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, B. Janker. Near- and mid-infrared laser-optical sensors for gas analysis. Opt. Laser. Eng., 37, 101(2002).

    [4] N. S. Lawrence. Analytical detection methodologies for methane and related hydrocarbons. Talanta, 69, 385(2006).

    [5] M. Lackner. Tunable diode laser absorption spectroscopy (TDLAS) in the process: a review. Rev. Chem. Eng., 23, 65(2007).

    [6] J. Shemshad, S. M. Aminossadati, M. S. Kizil. A review of developments in near infrared methane detection based on tunable diode laser. Sensor. Actuat. B Chem., 171, 77(2012).

    [7] J. Kamieniak, E. P. Randviir, C. E. Banks. The latest developments in the analytical sensing of methane. TrAC Trend. Anal. Chem., 73, 146(2015).

    [8] S. V. Kireev, S. L. Shnyrev. On-line monitoring of odorant in natural gas mixtures of different composition by the infrared absorption spectroscopy method. Laser Phys. Lett., 15, 035705(2018).

    [9] F. Wang, S. Jia, Y. Wang, Z. Tang. Recent developments in modulation spectroscopy for methane detection based on tunable diode laser. Appl. Sci., 9, 2816(2019).

    [10] J. Mi, H. Yu, L. Yuan, S. Li, M. Li, S. Liang, Q. Kan, J. Pan. Distributed Bragg reflector laser (1.8 µm) with 10 nm wavelength tuning range. Chin. Opt. Lett., 13, 041401(2015).

    [11] H. Yu, P. Wang, J. Mi, X. Zhou, J. Pan, H. Wang, L. Xie, W. Wang. 1.8-µm DBR lasers with over 11-nm continuous wavelength tuning range for multi-species gas detection. Asia Communications and Photonics Conference (ACP), 1(2017).

    [12] H. Yu, J. Pan, X. Zhou, H. Wang, L. Xie, W. Wang. A widely tunable three-section DBR lasers for multi-species gas detection. Appl. Sci., 11, 2618(2021).

    [13] H. Yu, M. Wang, D. Zhou, X. Zhou, P. Wang, S. Liang, Y. Zhang, J. Pan, W. Wang. A 1.6-µm widely tunable distributed Bragg reflector laser diode based on InGaAs/InGaAsP quantum-wells material. Opt. Commun., 497, 127201(2021).

    [14] Y. Fu, H. Liu, Y. Sui, B. Li, W. Ye, C. Zheng, Y. Wang. A near-infrared methane detection system using a 1.654 µm wavelength-modulated diode laser. Optoelectron. Lett., 12, 140(2016).

    [15] J. Wang, B. Li, G. Lin, Q. Ma, S. Wang, M. Piao. Near-infrared methane sensor based on a distributed feedback laser. Spectrosc. Lett., 52, 113(2019).

    [16] L. Shao, B. Fang, F. Zheng, X. Qiu, Q. He, J. Wei, C. Li, W. Zhao. Simultaneous detection of atmospheric CO and CH4 based on TDLAS using a single 2.3 µm DFB laser. Spectrochim. Acta A Mol. Biomol. Spectrosc., 222, 117118(2019).

    [17] B. Wang, H. Lu, A. Li, Y. Chen, T. Dai, S. Huang, H. Lian. Research of TDLAS methane detection system using VCSEL laser as the light source. Infrared Laser Eng., 49, 0405002(2020).

    [18] M. Chen, Y. Shi, R. Xiao, Z. Sun, S. Chen, Y. Xu, B. Yang, X. Chen. Tunable DFB laser array for multi-gas detection. 19th International Conference on Optical Communications and Networks (ICOCN), 1(2021).

    [19] B. Li, L. Xue, N. Ji, D. Wei. Research on spectroscopy modulation of a distributed feedback laser diode based on the TDLAS technique. Int. J. Opt., 2021, 8829790(2021).

    [20] F. Meng, H. Yu, X. Zhou, Y. Li, M. Wang, W. Yang, W. Chen, Y. Zhang, J. Pan. Quantum wells micro-ring resonator laser emitting at 1746  nm for gas sensing. Chin. Opt. Lett., 19, 041406(2021).

    [21] H. Lian, B. Wang, Y. Yu, L. Cheng, T. Dai, S. Huang. Carbon monoxide gas detection system based on VCSEL using TDLAS technology. Proc. SPIE, 11887, 118871O(2021).

    [22] I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcislo, S. Yu, E. J. Zak. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 203, 3(2017).

    [23] T. Hosoda, G. Kipshidze, L. Shterengas, G. Belenky. Diode lasers emitting near 3.44  µm in continuous-wave regime at 300 K. Electron. Lett., 46, 1455(2010).

    [24] L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth, L. Worschech. Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 µm wavelength range around room. Electron. Lett., 47, 46(2011).

    [25] G. K. Veerabathrana, S. Sprengel, A. Andrejew, M.-C. Amann. Room-temperature vertical-cavity surface-emitting lasers at 4 µm with GaSb-based type-II quantum wells. Appl. Phys. Lett., 110, 071104(2017).

    [26] H. Nie, F. Wang, J. Liu, K. Yang, B. Zhang, J. He. Rare-earth ions-doped mid-infrared (2.7–3 µm) bulk lasers: a review. Chin. Opt. Lett., 19, 091407(2021).

    [27] X. Ma, Y. Huang, Y. Yang, J. Xiao, H. Weng, Z. Xiao. Mode coupling in hybrid square-rectangular lasers for single mode operation. Appl. Phys. Lett., 109, 071102(2016).

    [28] X. Ma, Y. Huang, Y. Yang, H. Weng, J. Xiao, M. Tang, Y. Du. Mode and lasing characteristics for hybrid square-rectangular lasers. IEEE J. Sel. Top. Quantum Electron., 23, 1500409(2017).

    [29] Y. Hao, F. Wang, M. Tang, H. Weng, Y. Yang, J. Xiao, Y. Huang. Widely tunable single-mode lasers based on a hybrid square/rhombus-rectangular microcavity. Photonics Res., 7, 543(2019).

    Data from CrossRef

    [1] Zhengang Li, Jiaxiang Liu, Ganshang Si, Zhiqiang Ning, Yonghua Fang. Design of a high-sensitivity differential Helmholtz photoacoustic cell and its application in methane detection. Optics Express, 30, 28984(2022).

    Yingrun Fan, Jinlong Xiao, Zhengzheng Shen, Youzeng Hao, Jiachen Liu, Ke Yang, Yuede Yang, Yongzhen Huang. 1.65 µm square-FP coupled cavity semiconductor laser for methane gas detection[J]. Chinese Optics Letters, 2022, 20(6): 061401
    Download Citation