• Chinese Journal of Lasers
  • Vol. 47, Issue 2, 207006 (2020)
Li Wenbo, Shen Yi, and Li Buhong
Author Affiliations
  • Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education,Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350007, China
  • show less
    DOI: 10.3788/CJL202047.0207006 Cite this Article Set citation alerts
    Li Wenbo, Shen Yi, Li Buhong. Advances in Optical Imaging for Monitoring Photodynamic Therapy Dosimetry[J]. Chinese Journal of Lasers, 2020, 47(2): 207006 Copy Citation Text show less
    References

    [1] Yun S H. Kwok S J J. Light in diagnosis, therapy and surgery[J]. Nature Biomedical Engineering, 1, 0008(2017).

    [2] Fukumura D, Jain R K. Photodynamic therapy for cancer[J]. Nature Reviews Cancer, 3, 380-387(2003).

    [3] Li B H, Xie S S, Wilson B C. Advances in photodynamic therapy dosimetry[J]. Progress in Biochemistry and Biophysics, 36, 676-683(2009).

    [4] Celli J P, Spring B Q, Rizvi I et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization[J]. Chemical Reviews, 110, 2795-2838(2010).

    [5] Weishaupt K R, Gomer C J, Dougherty T J. Identification of singlet oxygen as the cytotoxic agent in photo-inactivation of a murine tumor[J]. Cancer Research, 36, 2326-2329(1976).

    [6] Yamamoto J, Yamamoto S, Hirano T et al. Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma[J]. Clinical Cancer Research, 12, 7132-7139(2006).

    [7] Krasnovsky A A Jr. Luminescence and photochemical studies of singlet oxygen photonics[J]. Journal of Photochemistry and Photobiology A: Chemistry, 196, 210-218(2008).

    [8] Allison R R, Sibata C H. Photofrin photodynamic therapy: 2.0 mg/kg or not 2.0 mg/kg that is the question[J]. Photodiagnosis and Photodynamic Therapy, 5, 112-119(2008).

    [9] Li L B, Li W M, Xiang L H et al. Photodynamic therapy: clinical research and application in China[J]. Chinese Journal of Laser Medicine & Surgery, 21, 278-307(2012).

    [10] Star W M. Lightdosimetry in vivo[J]. Physics in Medicine and Biology, 42, 763-787(1997).

    [11] Dougherty T J. Photosensitizers: therapy and detection of malignant tumors[J]. Photochemistry and Photobiology, 45, 879-889(1987).

    [12] Fuchs J, Thiele J. The role of oxygen in cutaneous photodynamic therapy[J]. Free Radical Biology and Medicine, 24, 835-847(1998).

    [13] Chen D F, Wang Y, Gu Y. Progress in dosimetric monitoring techniques involved in vascular targeted photodynamic therapy for port wine stains[J]. Chinese Journal of Laser Medicine & Surgery, 25, 82-96(2016).

    [14] Li B, Lin L, Lin H. Photosensitized singlet oxygen generation and detection: recent advances and future perspectives in cancer photodynamic therapy[J]. Journal of Biophotonics, 9, 1314-1325(2016).

    [15] Wilson B C, Patterson M S, Li B H et al. Correlation of in vivo tumor response and singlet oxygen luminescence detection in mTHPC-mediated photodynamic therapy[J]. Journal of Innovative Optical Health Sciences, 8, 1540006(2015). http://www.opticsjournal.net/Articles/Abstract?aid=OJ190110000055JfMiOl

    [16] Mallidi S, Spring B Q, Chang S et al. Optical imaging, photodynamic therapy and optically triggered combination treatments[J]. The Cancer Journal, 21, 194-205(2015).

    [17] Robertson C A, Evans D H, Abrahamse H. Photodynamic therapy (PDT):a short review on cellular mechanisms and cancer research applications for PDT[J]. Journal of Photochemistry and Photobiology B: Biology, 96, 1-8(2009).

    [18] Lan S Y, Zhang D, Liu X L et al. Tumor-microenvironment activable smart nanocarrier system for photodynamic therapy of cancers[J]. Chinese Journal of Lasers, 45, 0207008(2018).

    [19] Fingar V H. Vascular effects of photodynamic therapy[J]. Journal of Clinical Laser Medicine & Surgery, 14, 323-328(1996).

    [20] Krammer B. Vascular effects of photodynamic therapy[J]. Anticancer Research, 21, 4271-4277(2001).

    [21] Chen B, Pogue B W, Luna J M. Tumor vascular permeabilization by vascular-targeting photosensitization: effects, mechanism, and therapeutic implications[J]. Clinical Cancer Research, 12, 917-923(2006).

    [22] Shapey J, Xie Y J, Nabavi E et al. Intraoperative multispectral and hyperspectral label-free imaging: a systematic review of in vivo clinical studies[J]. Journal of Biophotonics, 12, 201800455(2019).

    [23] Zhou L. El-Deiry W S. Multispectral fluorescence imaging[J]. Journal of Nuclear Medicine, 50, 1563-1566(2009).

    [24] Hillebrands J L, van Dam G M et al. Multispectral near-infrared fluorescence molecular imaging of matrix metalloproteinases in a human carotid plaque using a matrix-degrading metalloproteinase-sensitive activatable fluorescent probe[J]. Circulation, 119, 534-536(2009).

    [25] Valdés P A, Leblond F, Jacobs V L et al. Quantitative, spectrally-resolved intraoperative fluorescence imaging[J]. Scientific Reports, 2, 798(2012).

    [26] Valdés P A, Leblond F, Kim A et al. A spectrally constrained dual-band normalization technique for protoporphyrin IX quantification in fluorescence-guided surgery[J]. Optics Letters, 37, 1817-1819(2012).

    [27] Valdes P A, Jacobs V L, Wilson B C et al. System and methods for wide-field quantitative fluorescence imaging during neurosurgery[J]. Optics Letters, 38, 2786-2788(2013).

    [28] Jermyn M, Gosselin Y, Valdes P A et al. Improved sensitivity to fluorescence for cancer detection in wide-field image-guided neurosurgery[J]. Biomedical Optics Express, 6, 5063-5074(2015).

    [29] Sibai M, Veilleux I, Elliott J T et al. Quantitative spatial frequency fluorescence imaging in the sub-diffusive domain for image-guided glioma resection[J]. Biomedical Optics Express, 6, 4923-4933(2015).

    [30] Xie Y J, Thom M, Ebner M et al. Wide-field spectrally resolved quantitative fluorescence imaging system: toward neurosurgical guidance in glioma resection[J]. Journal of Biomedical Optics, 22, 116006(2017).

    [31] Sunar U, Rohrbach D J, Morgan J et al. Quantification of PpIX concentration in basal cell carcinoma and squamous cell carcinoma models using spatial frequency domain imaging[J]. Biomedical Optics Express, 4, 531-537(2013).

    [32] Hirao A, Sato S, Saitoh D et al. In vivo photoacoustic monitoring of photosensitizer distribution in burned skin for antibacterial photodynamic therapy[J]. Photochemistry and Photobiology, 86, 426-430(2010).

    [33] Ho C J H, Balasundaram G, Driessen W et al. Multifunctional photosensitizer-based contrast agents for photoacoustic imaging[J]. Scientific Reports, 4, 5342(2015).

    [34] Hu W B, Ma H H, Hou B et al. Engineering lysosome-targeting BODIPY nanoparticles for photoacoustic imaging and photodynamic therapy under near-infrared light[J]. ACS Applied Materials & Interfaces, 8, 12039-12047(2016).

    [35] Yan X F, Hu H, Lin J et al. Optical and photoacoustic dual-modality imaging guided synergistic photodynamic/photothermal therapies[J]. Nanoscale, 7, 2520-2526(2015).

    [36] Krzykawska-Serda M, Dabrowski J M, Arnaut L G et al. The role of strong hypoxia in tumors after treatment in the outcome of bacteriochlorin-based photodynamic therapy[J]. Free Radical Biology and Medicine, 73, 239-251(2014).

    [37] Liu Y Y, Liu Y, Bu W B et al. Hypoxia induced by upconversion-based photodynamic therapy: towards highly effective synergistic bioreductive therapy in tumors[J]. Angewandte Chemie International Edition, 54, 8105-8109(2015).

    [38] Cao F, Qiu Z H, Li H H et al. Photoacoustic imaging in oxygen detection[J]. Applied Sciences, 7, 1262(2017).

    [39] Moore C, Jokerst J V. Strategies for image-guided therapy, surgery, and drug delivery using photoacoustic imaging[J]. Theranostics, 9, 1550-1571(2019).

    [40] Mallidi S, Watanabe K, Timerman D et al. Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging[J]. Theranostics, 5, 289-301(2015).

    [41] Shao P, Chapman D W, Moore R B et al. Monitoring photodynamic therapy with photoacoustic microscopy[J]. Journal of Biomedical Optics, 20, 106012(2015).

    [42] Neuschmelting V, Kim K, Malekzadeh-Najafabadi J et al. WST11 vascular targeted photodynamic therapy effect monitoring by multispectral optoacoustic tomography (MSOT) in mice[J]. Theranostics, 8, 723-734(2018).

    [43] Hirakawa Y, Mizukami K, Yoshihara T et al. Intravital phosphorescence lifetime imaging of the renal cortex accurately measures renal hypoxia[J]. Kidney International, 93, 1483-1489(2018).

    [44] Sakadžic S, Roussakis E, Yaseen M A et al. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue[J]. Nature Methods, 7, 755-759(2010).

    [45] Wang Y, Hu S, Maslov K et al. In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure[J]. Optics Letters, 36, 1029-1031(2011).

    [46] Shao Q, Ashkenazi S. Photoacoustic lifetime imaging fordirect in vivo tissue oxygen monitoring[J]. Journal of Biomedical Optics, 20, 036004(2015).

    [47] Chen S Y, Shu X, Nesper P L et al. Retinal oximetry in humans using visible-light optical coherence tomography[J]. Biomedical Optics Express, 8, 1415-1429(2017).

    [48] Yi J, Liu W Z, Chen S Y et al. Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation[J]. Light: Science & Applications, 4, e334(2015).

    [49] Chen S Y, Liu Q, Shu X et al. Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography[J]. Biomedical Optics Express, 7, 3377-3389(2016).

    [50] Jiang X P, Dai Z F. Reactive oxygen species in photodynamic therapy[J]. Chinese Science Bulletin, 63, 1783-1802(2018).

    [51] Scholz M, Biehl A L, Dědic R et al. The singlet-oxygen-sensitized delayed fluorescence in mammalian cells: a time-resolved microscopy approach[J]. Photochemical & Photobiological Sciences, 14, 700-713(2015).

    [52] Niedre M J, Yu C S, Patterson M S et al. Singlet oxygen luminescence as an in vivo photodynamic therapy dose metric: validation in normal mouse skin with topical amino-levulinic acid[J]. British Journal of Cancer, 92, 298-304(2005).

    [53] Looft A, Pfitzner M, Preuß A et al. In vivo singlet molecular oxygen measurements: sensitive to changes in oxygen saturation during PDT[J]. Photodiagnosis and Photodynamic Therapy, 23, 325-330(2018).

    [54] Kim I W, Park J M, Roh Y J et al. Direct measurement of singlet oxygen by using a photomultiplier tube-based detection system[J]. Journal of Photochemistry and Photobiology B: Biology, 159, 14-23(2016).

    [55] Gemmell N R. McCarthy A, Liu B C, et al. Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector[J]. Optics Express, 21, 5005-5013(2013).

    [56] Boso G, Ke D M, Korzh B et al. Time-resolved singlet-oxygen luminescence detection with an efficient and practical semiconductor single-photon detector[J]. Biomedical Optics Express, 7, 211-224(2016).

    [57] Hu B L, Zeng N, Liu Z Y et al. Two-dimensional singlet oxygen imaging with its near-infrared luminescence during photosensitization[J]. Journal of Biomedical Optics, 16, 016003(2011).

    [58] Lee S, Isabelle M E. Gabally-Kinney K L, et al. Dual-channel imaging system for singlet oxygen and photosensitizer for PDT[J]. Biomedical Optics Express, 2, 1233-1242(2011).

    [59] Lin L S, Li Y R, Zhang J D et al. Vessel constriction correlated with local singlet oxygen generation during vascular targeted photodynamic therapy[J]. Proceedings of SPIE, 9268, 92680T(2014).

    [60] Briers D J. Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging[J]. Physiological Measurement, 22, R35-R66(2001).

    [61] Lin L S, Chen D F, Gu Y et al. Optical monitoring techniques for assessing vascular damage of vascular targeted photodynamic therapy[J]. Acta Laser Biology Sinica, 25, 97-106(2016).

    [62] Chen D F, Ren J, Wang Y et al. Intraoperative monitoring of blood perfusion in port wine stains by laser Doppler imaging during vascular targeted photodynamic therapy: a preliminary study[J]. Photodiagnosis and Photodynamic Therapy, 14, 142-151(2016).

    [63] Yu G, Durduran T, Zhou C et al. Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy[J]. Clinical Cancer Research, 11, 3543-3552(2005).

    [64] Dunn A K. Laser speckle contrast imaging of cerebral blood flow[J]. Annals of Biomedical Engineering, 40, 367-377(2012).

    [65] Vaz P G, Humeau-Heurtier A, Figueiras E et al. Laser speckle imaging to monitor microvascular blood flow: a review[J]. IEEE Reviews in Biomedical Engineering, 9, 106-120(2016).

    [66] Li C X, Chen W L, Jiang J Y et al. Laser speckle contrast imaging on in vivo blood flow: a review[J]. Chinese Journal of Lasers, 45, 0207006(2018).

    [67] Kruijt B, de Bruijn H S et al. Laser speckle imaging of dynamic changes in flow during photodynamic therapy[J]. Lasers in Medical Science, 21, 208-212(2006).

    [68] Moy W J, Patel S J, Lertsakdadet B S et al. Preclinical in vivo evaluation of Npe6-mediated photodynamic therapy on normal vasculature[J]. Lasers in Surgery and Medicine, 44, 158-162(2012).

    [69] Ren J, Li P C, Zhao H Y et al. Assessment of tissue perfusion changes in port wine stains after vascular targeted photodynamic therapy: a short-term follow-up study[J]. Lasers in Medical Science, 29, 781-788(2014).

    [70] Abdurashitov A, Bragina O, Sindeeva O et al. Off-axis holographic laser speckle contrast imaging of blood vessels in tissues[J]. Journal of Biomedical Optics, 22, 091514(2017).

    [71] Wang L V, Yao J J. A practical guide to photoacoustic tomography in the life sciences[J]. Nature Methods, 13, 627-638(2016).

    [72] Tang J M, Huang Z. Application of photoacoustic imaging techniques in research of photodynamic therapy[J]. Acta Laser Biology Sinica, 25, 204-208(2016).

    [73] Gao X X, Tao C, Wang X D et al. Quantitative imaging of microvasculature in deep tissue with a spectrum-based photo-acoustic microscopy[J]. Optics Letters, 40, 970-973(2015).

    [74] Liu L B, Tao C, Liu X J et al. Photoacoustic tomography from weak and noisy signals by using a pulse decomposition algorithm in the time-domain[J]. Optics Express, 23, 26969-26977(2015).

    [75] Xiang L Z, Xing D, Gu H M et al. Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor[J]. Journal of Biomedical Optics, 12, 014001(2007).

    [76] Li P, Li P. Mass simple optical coherence tomography angiography technology and application[J]. Chinese Journal of Lasers, 45, 0307001(2018).

    [77] Swanson E A, Fujimoto J G. The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact[J]. Biomedical Optics Express, 8, 1638-1664(2017).

    [78] Leitgeb R A, Werkmeister R M, Blatter C et al. Doppler optical coherence tomography[J]. Progress in Retinal and Eye Research, 41, 26-43(2014).

    [79] de Carlo T E, Romano A, Waheed N K et al. A review of optical coherence tomography angiography (OCTA)[J]. International Journal of Retina and Vitreous, 1, 5(2015).

    [80] Chen C L, Wang R K. Optical coherence tomography based angiography[J]. Biomedical Optics Express, 8, 1056-1082(2017).

    [81] Latrive A. Teixeira L R C, Gomes A S L, et al. Characterization of skin Port-Wine Stain and Hemangioma vascular lesions using Doppler OCT[J]. Skin Research and Technology, 22, 223-229(2016).

    [82] Pellegrini M, Corvi F. Say E A T, et al. Optical coherence tomography angiography features of choroidal neovascularization associated with choroidal nevus[J]. Retina, 38, 1338-1346(2018).

    [83] de Jong J H, Braaf B, Amarakoon S et al. Treatment effects in retinal angiomatous proliferation imaged with OCT angiography. [C]//Annual Meeting of the Association for Research in Vision and Ophthalmology(ARVO), May 01, 2016, Seattle, WA, USA. Maryland: Assoc Res Vis & Ophthalmol, 241, 143-153(2019).

    [84] Matveev L A, Zaitsev V Y, Gelikonov G V et al. Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans[J]. Optics Letters, 40, 1472-1475(2015).

    [85] Sirotkina M A, Matveev L A, Shirmanova M V et al. Photodynamic therapy monitoring with optical coherence angiography[J]. Scientific Reports, 7, 41506(2017).

    [86] Sirotkina M A, Gubarkova E V, Matveev L A et al. Optical coherence angiography monitoring of tumor early response to PDT in experimental and clinical studies[J]. Proceedings of SPIE, 11079, 110790K(2019).

    [87] Harper D J, Augustin M, Lichtenegger A et al. White light polarization sensitive optical coherence tomography for sub-micron axial resolution and spectroscopic contrast in the murine retina[J]. Biomedical Optics Express, 9, 2115-2129(2018).

    [88] Fujimoto J G. Optical coherence tomography for ultrahigh resolution in vivo imaging[J]. Nature Biotechnology, 21, 1361-1367(2003).

    [89] Liu G J, Chen A Z. Advances in Doppler OCT[J]. Chinese Optics Letters, 11, 011702(2013). http://www.opticsjournal.net/Articles/Abstract?aid=OJ130115000014IfLiOk

    Li Wenbo, Shen Yi, Li Buhong. Advances in Optical Imaging for Monitoring Photodynamic Therapy Dosimetry[J]. Chinese Journal of Lasers, 2020, 47(2): 207006
    Download Citation