• Infrared and Laser Engineering
  • Vol. 51, Issue 5, 20220271 (2022)
Zhaoyu Cai, Zihao Wang, Changxi Yang, and Chengying Bao*
Author Affiliations
  • State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/IRLA20220271 Cite this Article
    Zhaoyu Cai, Zihao Wang, Changxi Yang, Chengying Bao. Coherently pumped microcavity soliton physics and dual-comb applications(Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220271 Copy Citation Text show less
    References

    [1] K J Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [2] T Kippenberg, S Spillane, K Vahala. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys Rev Lett, 93, 083904(2004).

    [3] Savchenkov, A A, A B Matsko, D Strekalov, et al. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys Rev Lett, 93, 243905(2004).

    [4] Del’Haye, P, A Schliesser, O Arcizet, et al. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [5] T Udem, R Holzwarth, T W Hänsch. Optical frequency metrology. Nature, 416, 233(2002).

    [6] S T Cundiff, J Ye. Colloquium: Femtosecond optical frequency combs. Rev Mod Phys, 75, 325(2003).

    [7] S A Diddams, K Vahala, T Udem. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science, 369, eaay3676(2020).

    [8] D J Jones, S A Diddams, J K Ranka, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 288, 635-639(2000).

    [9] P Grelu, N Akhmediev. Dissipative solitons for modelocked lasers. Nature Photonics, 6, 84-92(2012).

    [10] T Herr. Brasch V, Jost J D, et al. Temporal solitons in optical microresonators. Nature Photonics, 8, 145-152(2014).

    [11] X X Xue, Y Xuan, Y Liu, et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nature Photonics, 9, 594-600(2015).

    [12] T J Kippenberg, A L Gaeta, M Lipson, et al. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [13] M G Suh, K Vahala. Gigahertz-repetition-rate soliton microcombs. Optica, 5, 65-66(2018).

    [14] Q Li, T C Briles, D A Westly, et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica, 4, 193-203(2017).

    [15] M H Pfeiffer, C Herkommer, J Q Liu, et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica, 4, 684-691(2017).

    [16] C H Li, A J Benedick, P Fendel, et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cms−1. Nature, 452, 610-612(2008).

    [17] T Steinmetz, T Wilken, C Araujo-Hauck, et al. Laser frequency combs for astronomical observations. Science, 321, 1335-1337(2008).

    [18] M G Suh, X Yi, Y H Lai, et al. Searching for exoplanets using a microresonator astrocomb. Nature Photonics, 13, 25(2019).

    [19] E Obrzud, M Rainer, A Harutyunyan, et al. A microphotonic astrocomb. Nature Photonics, 13, 31(2019).

    [20] P Marin-Palomo, J N Kemal, M Karpov, et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274(2017).

    [21] Fül?p, A, M Mazur, A Lorences-Riesgo, et al. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nature Communications, 9, 1-8(2018).

    [22] Y Geng, H Zhou, X J Han, et al. Coherent optical communications using coherence-cloned kerr soliton microcombs. Nature Communications, 13, 1070(2022).

    [23] W Liang, D Eliyahu, V S Ilchenko, et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nature Communications, 6, 7957(2015).

    [24] D Marpaung, J Yao, J Capmany. Integrated microwave photonics. Nature Photonics, 13, 80-90(2019).

    [25] T J Kippenberg, R Holzwarth, S A Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [26] V Brasch, M Geiselmann, T Herr, et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science, 351, 357-360(2016).

    [27] P H Wang, J A Jaramillo-Villegas, Y Xuan, et al. Intracavity characterization of micro-comb generation in the single-soliton regime. Opt Express, 24, 10890-10897(2016).

    [28] C Joshi, J K Jang, K Luke, et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt Lett, 41, 2565-2568(2016).

    [29] X Yi, Q F Yang, K Y Yang, et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2, 1078-1085(2015).

    [30] Y Xu, Y Lin, A Nielsen, et al. Harmonic and rational harmonic driving of microresonator soliton frequency combs. Optica, 7, 940-946(2020).

    [31] M Yu, Y Okawachi, A G Griffith, et al. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica, 3, 854-860(2016).

    [32] Z Gong, A Bruch, Mohan Shen, et al. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. Opt Lett, 43, 4366-4369(2018).

    [33] Y He, Q F Yang, J W Ling, et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138-1144(2019).

    [34] Z Gong, X Liu, Y Xu, et al. Near-octave lithium niobate soliton microcomb. Optica, 7, 1275-1278(2020).

    [35] M Pu, L Ottaviano, E Semenova, et al. Efficient frequency comb generation in algaas-on-insulator. Optica, 3, 823-826(2016).

    [36] L Chang, W Q Xie, H W Shu, et al. Ultra-efficient frequency comb generation in algaas-on-insulator microresonators. Nature Communications, 11, 1-8(2020).

    [37] G Moille, L Chang, W Q Xie, et al. Dissipative Kerr solitons in a III-V microresonator. Laser & Photonics Reviews, 14, 2000022(2020).

    [38] H Jung, S P Yu, D R Carlson, et al. Tantala Kerr nonlinear integrated photonics. Optica, 8, 811-817(2021).

    [39] Zheng Y, Sun C Z, Xiong B, et al. Integrated gallium nitride nonlinear photonics[J]. arXiv, 2020: 2010.16149.

    [40] D J Wilson, K Schneider, S Honl, et al. Integrated gallium phosphide nonlinear photonics. Nature Photonics, 14, 57-62(2020).

    [41] Z Lu, H J Chen, W Wang, et al. Synthesized soliton crystals. Nature communications, 12, 1-7(2021).

    [42] B Shen, L Chang, J Liu, et al. Integrated turnkey soliton microcombs. Nature, 582, 365-369(2020).

    [43] B Stern, X Ji, Y Okawachi, et al. Battery-operated integrated frequency comb generator. Nature, 562, 401-405(2018).

    [44] C Xiang, J Liu, J Guo, et al. Laser soliton microcombs heterogeneously integrated on silicon. Science, 373, 99-103(2021).

    [45] C Bao, C Yang. Mode-pulling and phase-matching in broadband Kerr frequency comb generation. JOSA B, 31, 3074-3080(2014).

    [46] H Guo, M Karpov, E Lucas, et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nature Physics, 13, 94-102(2017).

    [47] C Bao, Y Xuan, J A Jaramillo-Villegas, et al. Direct soliton generation in microresonators. Optics Letters, 42, 2519-2522(2017).

    [48] X Yi, Q F Yang, K Y Yang, et al. Active capture and stabilization of temporal solitons in microresonators. Optics Letters, 41, 2037-2040(2016).

    [49] J R Stone, T C Briles, T E Drake, et al. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs. Physical Review Letters, 121, 063902(2018).

    [50] H Zhou, Y Geng, W Cui, et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light: Science & Applications, 8, 1-10(2019).

    [51] S Zhang, J M Silver, Bino L Del, et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica, 6, 206-212(2019).

    [52] N G Pavlov, S Koptyaev, G V Lihachev, et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes. Nature Photonics, 12, 694-698(2018).

    [53] C Bao, Y Xuan, D E Leaird, et al. Spatial mode-interaction induced single soliton generation in microresonators. Optica, 4, 1011-1015(2017).

    [54] T Herr, V Brasch, J D Jost, et al. Mode spectrum and temporal soliton formation in optical microresonators. Physical Review Letters, 113, 123901(2014).

    [55] D T Spencer, T Drake, T C Briles, et al. An integrated-photonics optical-frequency synthesizer. Nature, 557, 81(2017).

    [56] Z L Newman, V Maurice, T Drake, et al. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680-685(2019).

    [57] M Karpov, H Guo, A Kordts, et al. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator. Physical Review Letters, 116, 103902(2016).

    [58] X Yi, Q F Yang, K Y Yang, et al. Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities. Optics Letters, 41, 3419-3422(2016).

    [59] S Yao, Z Wei, Y Guo, et al. Self-frequency shift of AlN-on-sapphire Kerr solitons. Optics Letters, 46, 5312-5315(2021).

    [60] X Yi, Q F Yang, X Zhang, et al. Single-mode dispersive waves and soliton microcomb dynamics. Nature Communications, 8, 1-9(2017).

    [61] A B Matsko, L Maleki. On timing jitter of mode locked Kerr frequency combs. Optics Express, 21, 28862-28876(2013).

    [62] C Bao, M G Suh, B Shen, et al. Quantum diffusion of microcavity solitons. Nature Physics, 17, 462-466(2021).

    [63] K Jia, X Wang, D Kwon, et al. Photonic flywheel in a monolithic fiber resonator. Physical Review Letters, 125, 143902(2020).

    [64] D Jeong, D Kwon, I Jeon, et al. Ultralow jitter silica microcomb. Optica, 7, 1108-1111(2020).

    [65] C Bao, C Yang. Carrier-envelope phase dynamics of cavity solitons: Scaling law and soliton stability. Physical Review A, 92, 053831(2015).

    [66] A B Matsko, A A Savchenkov, L Maleki. On excitation of breather solitons in an optical microresonator. Optics Letters, 37, 4856-4858(2012).

    [67] C Bao, J A Jaramillo-Villegas, Y Xuan, et al. Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator. Physical Review Letters, 117, 163901(2016).

    [68] E Lucas, M Karpov, H Guo, et al. Breathing dissipative solitons in optical microresonators. Nature Communications, 8, 1-11(2017).

    [69] M Yu, J K Jang, Y Okawachi, et al. Breather soliton dynamics in microresonators. Nature Communications, 8, 1-7(2017).

    [70] X Yi, Q F Yang, K Y Yang, et al. Imaging soliton dynamics in optical microcavities. Nature Communications, 9, 1-8(2018).

    [71] C Bao, Y Xuan, C Wang, et al. Observation of breathing dark pulses in normal dispersion optical microresonators. Physical Review Letters, 121, 257401(2018).

    [72] S Yao, C Bao, P Wang, et al. Generation of stable and breathing flat-top solitons via Raman assisted four wave mixing in microresonators. Physical Review A, 101, 023833(2020).

    [73] B Yao, S W Huang, Y Liu, et al. Gate-tunable frequency combs in graphene–nitride microresonators. Nature, 558, 410-414(2018).

    [74] G I Stegeman, M Segev. Optical spatial solitons and their interactions: universality and diversity. Science, 286, 1518-1523(1999).

    [75] W Weng, R Bouchand, E Lucas, et al. Heteronuclear soliton molecules in optical microresonators. Nature Communications, 11, 1-9(2020).

    [76] Q F Yang, X Yi, K Y Yang, et al. Stokes solitons in optical microcavities. Nature Physics, 13, 53-57(2017).

    [77] J K Jang, M Erkintalo, S Coen, et al. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons. Nature Communications, 6, 1-7(2015).

    [78] H Taheri, A B Matsko, L Maleki. Optical lattice trap for Kerr solitons. The European Physical Journal D, 71, 1-13(2017).

    [79] Y Wang, F Leo, J Fatome, et al. Universal mechanism for the binding of temporal cavity solitons. Optica, 4, 855-863(2017).

    [80] M Karpov, M H P Pfeiffer, H Guo, et al. Dynamics of soliton crystals in optical microresonators. Nature Physics, 15, 1071-1077(2019).

    [81] Q F Yang, X Yi, K Y Yang, et al. Counter-propagating solitons in microresonators. Nature Photonics, 11, 560-564(2017).

    [82] C Bao, B Shen, M G Suh, et al. Oscillatory motion of a counterpropagating Kerr soliton dimer. Physical Review A, 103, L011501(2021).

    [83] E Lucas, G Lihachev, R Bouchand, et al. Spatial multiplexing of soliton microcombs. Nature Photonics, 12, 699-705(2018).

    [84] J K Jang, A Klenner, X Ji, et al. Synchronization of coupled optical microresonators. Nature Photonics, 12, 688-693(2018).

    [85] B Y Kim, J K Jang, Y Okawachi, et al. Synchronization of nonsolitonic Kerr combs. Science Advances, 7, eabi4362(2021).

    [86] I Coddington, N Newbury, W Swann. Dual-comb spectroscopy. Optica, 3, 414-426(2016).

    [87] M G Suh, Q F Yang, K Y Yang, et al. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016).

    [88] A Dutt, C Joshi, X Ji, et al. On-chip dual-comb source for spectroscopy. Science Advances, 4, e1701858(2018).

    [89] Q F Yang, B Shen, H Wang, et al. Vernier spectrometer using counterpropagating soliton microcombs. Science, 363, 965-968(2019).

    [90] C Bao, M G Suh, K Vahala. Microresonator soliton dual-comb imaging. Optica, 6, 1110-1116(2019).

    [91] M G Suh, K J Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    [92] P Trocha, M Karpov, D Ganin, et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).

    [93] A Schliesser, N Picqué, T W Hänsch. Mid-infrared frequency combs. Nature Photonics, 6, 440-449(2012).

    [94] C Y Wang, T Herr, P Del’Haye, et al. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nature Communications, 4, 1-7(2013).

    [95] A G Griffith, R K W Lau, J Cardenas, et al. Silicon-chip mid-infrared frequency comb generation. Nature Communications, 6, 1-5(2015).

    [96] M Yu, Y Okawachi, A G Griffith, et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nature Commu-nications, 9, 1-6(2018).

    [97] K Luke, Y Okawachi, M R E Lamont, et al. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Optics Letters, 40, 4823-4826(2015).

    [98] M Yan, P L Luo, K Iwakuni, et al. Mid-infrared dual-comb spectroscopy with electro-optic modulators. Light: Science & Applications, 6, e17076(2017).

    [99] A S Kowligy, D R Carlson, D D Hickstein, et al. Mid-infrared frequency combs at 10 GHz. Optics Letters, 45, 3677-3680(2020).

    [100] H Timmers, A Kowligy, A Lind, et al. Molecular fingerprinting with bright, broadband infrared frequency combs. Optica, 5, 727-732(2018).

    [101] C Bao, Z Yuan, H Wang, et al. Interleaved difference-frequency generation for microcomb spectral densification in the mid-infrared. Optica, 7, 309-315(2020).

    [102] C Bao, Z Yuan, L Wu, et al. Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy. Nature Communications, 12, 1-8(2021).

    [103] A Cingöz, D C Yost, T K Allison, et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature, 482, 68-71(2012).

    [104] M A Guidry, D M Lukin, K Y Yang, et al. Quantum optics of soliton microcombs. Nature Photonics, 16, 52-58(2022).

    Zhaoyu Cai, Zihao Wang, Changxi Yang, Chengying Bao. Coherently pumped microcavity soliton physics and dual-comb applications(Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220271
    Download Citation