• Journal of Infrared and Millimeter Waves
  • Vol. 43, Issue 6, 806 (2024)
Xue-Nan LI1,2, Zeng-Yue ZHAO1,*, Fei-Long YU1, Jin CHEN1..., Guan-Hai LI1,2,3,4,**, Zhi-Feng LI1 and Xiao-Shuang CHEN1,2,3,4,***|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai,200083,China
  • 2University of Chinese Academy of Sciences,Beijing,100049,China
  • 3Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou,310024,China
  • 4Shanghai Research Center for Quantum Sciences,Shanghai,201315,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2024.06.011 Cite this Article
    Xue-Nan LI, Zeng-Yue ZHAO, Fei-Long YU, Jin CHEN, Guan-Hai LI, Zhi-Feng LI, Xiao-Shuang CHEN. Angular-tunable on-chip coding metasurface enabled by phase-change material with immersion liquid[J]. Journal of Infrared and Millimeter Waves, 2024, 43(6): 806 Copy Citation Text show less
    References

    [1] H H Hsiao, C H Chu, D P Tsai. Fundamentals and Applications of Metasurfaces. Small Methods, 1, 1600064(2017).

    [2] M Khorasaninejad, F Capasso. Metalenses: Versatile multifunctional photonic components. Science, 358, eaam8100(2017).

    [3] D D Wen, F Y Yue, G X Li et al. Helicity multiplexed broadband metasurface holograms. Nature Communications, 6, 8241(2015).

    [4] K Ou, G H Li, T X Li et al. High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces. Nanoscale, 10, 19154-19161(2018).

    [5] S Raoux, D Ielmini, M Wuttig et al. Phase change materials. Mrs Bulletin, 37, 118-123(2012).

    [6] Z L Gong, F Y Yang, L T Wang et al. Phase change materials in photonic devices. Journal of Applied Physics, 129, 030902(2021).

    [7] J W Xu, X M Tian, P Ding et al. Ge2Sb2Se4Te1-based multifunctional metalenses for polarization-independent, switchable and dual-mode focusing in the mid-infrared region. Optics Express, 29, 44227-44238(2021).

    [8] U Michel A-K, P Zalden, D N Chigrin et al. Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses. ACS Photonics, 1, 833-839(2014).

    [9] C R De Galarreta, A M Alexeev, Y Y Au et al. Nonvolatile reconfigurable phase‐change metadevices for beam steering in the near infrared. Advanced Functional Materials, 28, 1704993(2018).

    [10] T J Cui, M Q Qi, X Wan et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Science & Applications, 3, e218(2014).

    [11] C X Liu, F Yang, X J Fu et al. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals. Advanced Optical Materials, 9, 2100932(2021).

    [12] C Huang, B Sun, W B Pan et al. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface. Scientific Reports, 7, 42302(2017).

    [13] H Chen, W B Lu, Z G Liu et al. Microwave programmable graphene metasurface. ACS Photonics, 7, 1425-1435(2020).

    [14] X Y Huang, Z X Liu, Y Lian et al. Dynamic beam all-direlectric coding metasurface converter based on phase change materials of GST. Optics & Laser Technology, 159, 109037(2023).

    [15] Q W Lin, H Wong, L Huitema et al. Coding metasurfaces with reconfiguration capabilities based on optical activation of phase‐change materials for terahertz beam manipulations. Advanced Optical Materials, 10, 2101699(2021).

    [16] Y H Guo, M B Pu, X Li et al. Chip-integrated geometric metasurface as a novel platform for directional coupling and polarization sorting by spin-orbit interaction. IEEE Journal of Selected Topics in Quantum Electronics, 24, 4700107(2018).

    [17] Z Wang, T T Li, A Soman et al. On-chip wavefront shaping with dielectric metasurface. Nature Communications, 10, 3547(2019).

    [18] R Yang, Y Y Shi, C J Dai et al. On-chip metalenses based on one-dimensional gradient trench in the broadband visible. Optics Letters, 45, 5640-5643(2020).

    [19] J M Laskar, P S Kumar, S Herminghaus et al. High refractive index immersion liquid for superresolution 3D imaging using sapphire-based aplanatic numerical aperture increasing lens optics. Applied Optics, 55, 3165-3169(2016).

    [20] Z Li, C W Wan, C J Dai et al. Actively switchable beam‐steering via hydrophilic/hydrophobic‐selective design of water‐immersed metasurface. Advanced Optical Materials, 9, 2100297(2021).

    [21] J Yao, M K Chen, R Lin et al. Tunable water‐based meta‐lens. Advanced Optical Materials, 2300130(2023).

    [22] K He, T T Tang, L Bi et al. Polarization-dependent reconfigurable light field manipulation by liquid-immersion metasurface. Optics Express, 31, 13739-13750(2023).

    [23] S Wan, C J Dai, Z Li et al. Toward water-immersion programmable meta-display. Advanced Science, 10, 2205581(2022).

    [24] Q T Li, J van de Groep, A K White et al. Metasurface optofluidics for dynamic control of light fields. Nature Nanotechnology, 17, 1097-1103(2022).

    [25] Z Li, C W Wan, C J Dai et al. Immersion-triggered active switch for spin-decoupled meta-optics multi-display. Small, 18, 2205041(2022).

    [26] Y F Zhang, J B Chou, J Y Li et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nature Communications, 10, 4279(2019).

    [27] M Y Shalaginov, S An, Y Zhang et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nature Communications, 12, 1225(2021).

    [28] B B Hou, L N Zhang. Liquid microdroplet as an optical component to achieve imaging of 100nm nanostructures on a far-field microscope. Journal of optics, 20, 055606(2018).

    [29] W H PRICHARD, W J ORVILLE-THOMAS. Infra-red dispersion studies Part 1.-dichloro-, dibromo-, and diiodomethane. Transactions of the Faraday Society, 59, 2218-2227(1963).

    [30] N F Yu, P Genevet, M A Kats et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [31] Q Cheng, L Zhang, J Y Dai et al. Reconfigurable intelligent surfaces: simplified-architecture transmitters—from theory to implementations. Proceedings of the IEEE, 110, 1266-1289(2022).

    [32] H L Wang, Y K Zhang, T Y Zhang et al. Broadband and programmable amplitude-phase-joint-coding information metasurface. ACS applied materials & interfaces, 14, 29431-29440(2022).

    Xue-Nan LI, Zeng-Yue ZHAO, Fei-Long YU, Jin CHEN, Guan-Hai LI, Zhi-Feng LI, Xiao-Shuang CHEN. Angular-tunable on-chip coding metasurface enabled by phase-change material with immersion liquid[J]. Journal of Infrared and Millimeter Waves, 2024, 43(6): 806
    Download Citation