• Laser & Optoelectronics Progress
  • Vol. 52, Issue 5, 51402 (2015)
Xing Junhong* and Jiao Mingxing
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop52.051402 Cite this Article Set citation alerts
    Xing Junhong, Jiao Mingxing. Design and Experimental Study of Tunable Dual-Frequency Nd∶YAG Laser with Large Frequency Difference[J]. Laser & Optoelectronics Progress, 2015, 52(5): 51402 Copy Citation Text show less
    References

    [1] M Brunel, F Bretenaker, A Le Floch, et al.. Tunable optical microwave source using spatially resolved laser eigenstates[J]. Opt Lett, 1997, 22(5): 384-386.

    [2] M Brunel, O Emilf, F Bretenaker, et al.. Tunable two frequency lasers for lifetime measurements[J]. Opt Rev, 1997, 4(5): 550-552.

    [3] M Brunel, F Bretenaker, S Blanc, et al.. High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop[J]. IEEE Photon Technol Lett, 2004, 16(3): 870-872.

    [4] M Brunel, A Amon, M Vallet. Dual-polarization microchip laser at 1.53 mm[J]. Opt Lett, 2005, 30(18): 2418-2420.

    [5] A Rrolland, L Frein, M Vallet, et al.. 40-GHz photonic synthesizer using a dual-polarization picrolaser[J]. IEEE Photo Technol Lett, 2010, 22(23): 1738-1740.

    [6] V G Gudelev, V V Mashho, N K Nikeenko, et al.. Diode-pumped cw tunable two-frequency YAG∶Nd3+ laser with coupled resonators[J]. Appl Phys, 2003, 76(3): 249-252.

    [7] J Le Gouet, L Morvan, M Alouini, et al.. Dual-frequency single-axis laser using a lead lanthanum zirconate tantanate (PLZT) birefringent etalon for millimeter wave generation: Beyond the standard limit of tunability[J]. Opt Lett, 2007, 32(9): 1090-1092.

    [8] A McKay, P Dekker, D W Coutts, et al.. Enhanced self-heterodyne performance using a Nd-doped ceramic YAG laser[J]. Opt Commun, 2007, 272(2): 425-430.

    [9] A McKay, J M Dawes. Tunable terahertz signals using a helicoidally polarized ceramic microchip laser[J]. IEEE Photon Technol Lett, 2009, 21(7): 480-482.

    [10] Wu Xia, Yang Suhui, Chen Ying, et al.. Tunable two-frequency solid-state laser with coupled-cavity configuration[J]. Acta Optica Sinica, 2012, 32(3): 0314003.

    [11] Jiao Mingxing, Zhang Shulian, Liang Jinwen. Birefringent dual-frequency Nd∶YAG laser with large frequency-difference [J]. Chinese J Lasers, 2001, 28(2): 100-102.

    [12] Jiao Mingxing, Xing Junhong, Liu Yun, et al.. Design and experimental study of two-cavity dual-frequency all-solidstate laser with large frequency difference[J]. Chinese J Lasers, 2010, 367(11): 2784-2789.

    [13] Li Lei, Zhao Changming, Zhang Peng, et al.. The study on diode-pumped two-frequency solid-state laser with tunable frequency difference[J]. Acta Physica Sinica, 2007, 56(5): 2663-2669.

    [14] Yang Qing, Huo Yujing, Duan Yusheng, et al.. Double-longitudinal-mode continuous-wave laser with ultra-large frequency difference used for narrowband terahertz-wave generation[J]. Acta Optica Sinica, 2013, 33(5): 0514002.

    [15] Jiao Mingxing, Xing Junhong, Liu Yun. Design and experimental study of electro-optically tunable single frequency Nd∶YAG laser at 1064 nm[J]. Chinese J Lasers, 2014, 41(3): 0302007.

    CLP Journals

    [1] Su Jing, Jin Pixian, Wei Yixiao, Lu Huadong, Peng Kunchi. Automatically and Broadly Tunable All-Solid-State Continuous Single-Frequency Ti∶Sapphire Laser[J]. Chinese Journal of Lasers, 2017, 44(7): 701006

    Xing Junhong, Jiao Mingxing. Design and Experimental Study of Tunable Dual-Frequency Nd∶YAG Laser with Large Frequency Difference[J]. Laser & Optoelectronics Progress, 2015, 52(5): 51402
    Download Citation