• Infrared and Laser Engineering
  • Vol. 54, Issue 3, 20250042 (2025)
Yingxiao MA1,2 and Ziyuan LI1,2
Author Affiliations
  • 1Beijing Institute of Technology, Key Laboratory of Photoelectronic Imaging Technology and Systems of Ministry of Education, Beijing 100081, China
  • 2Beijing Institute of Technology, School of Optics and Photonics, Beijing 100081, China
  • show less
    DOI: 10.3788/IRLA20250042 Cite this Article
    Yingxiao MA, Ziyuan LI. Research progress of novel on-chip multispectral photodetectors (inner cover paper·invited)[J]. Infrared and Laser Engineering, 2025, 54(3): 20250042 Copy Citation Text show less
    References

    [2] SONG L, CI L, LU H et al. Large scale growth and characterization of atomic hexagonal boron nitride layers[J]. Nano Letters, 10, 3209-3215(2010).

    [3] KIM K, HSU A, JIA X et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition[J]. Nano Letters, 12, 161-166(2012).

    [4] FAN Y, HUANG W, ZHU F et al. Dispersion-assisted high-dimensional photodetector[J]. Nature, 630, 77-83(2024).

    [5] WANG L, XU X, QIAO R et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper[J]. Nature, 570, 91-95(2019).

    [6] MENGU D, TABASSUM A, JARRAHI M et al. Snapshot multispectral imaging using a diffractive optical network[J]. Light: Science & Applications, 12, 86-20(2023).

    [7] DIJKSTRA K, VAN DE LOOSDRECHT J, SCHOMAKER L R B et al. Hyperspectral demosaicking and crosstalk correction using deep learning[J]. Machine Vision & Applications, 30, 1-21(2019).

    [8] FENG K, ZHAO Y, CHAN J C-W et al. Mosaic convolution-attention network for demosaicing multispectral filter array images[J]. IEEE Transactions on Computational Imaging, 7, 864-878(2021).

    [9] LIU S, ZHANG Y, CHEN J et al. A deep joint network for multispectral demosaicking based on pseudo-panchromatic images[J]. IEEE Journal of Selected Topics in Signal Processing, 16, 622-635(2022).

    [11] LI Y, JIN W, QIU S et al. Multiscale spatial-frequency domain dynamic pansharpening of remote sensing images integrated with wavelet transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 62, 1-15(2024).

    [12] ZHENG Y, YU B. Overview of spectrum-dividing technologies in imaging spectrometers[J]. National Remote Sensing Bulletin, 6, 75-80(2002).

    [13] LIN H, HUANG C. Linear variable filter based on a gradient grating period guided-mode resonance filter[J]. IEEE Photonics Technology Letters, 28, 1042-1045(2016).

    [14] COARER E, BLAIZE S, BENECH P et al. Wavelength-scale stationary-wave integrated Fourier-transform spectrometry[J]. Nature Photonics, 1, 473-478(2007).

    [16] LI W, WANG C, ZHENG X. Review of imaging spectrometer based on linear variable filter[J]. Infrared, 36, 1-7(2015).

    [17] GAO Z, HAO Q, LIU Y. Hyperspectral imaging and application technology development[J]. Metrology & Measurement Technology, 39, 24-34(2019).

    [18] DING K, WANG M, CHEN M et al. Snapshot spectral imaging: From spatial-spectral mapping to metasurface-based imaging[J]. Nanophotonics, 13, 1303-1330(2024).

    [19] GEELEN B, TACK N, LAMBRECHTS A[J], 8974, 89740(2014).

    [20] BIAN L, WANG Z, ZHANG Y et al. A broadband hyperspectral image sensor with high spatio-temporal resolution[J]. Nature, 635, 73-81(2024).

    [21] YU X, HAO J, ZHOU J et al. Modular snapshot multispectral-panchromatic imager (MSPI) with customized filter arrays[J]. Optics Express, 31, 1475-1485(2023).

    [22] HAO H, JIN J, LI X et al. Flexible long-wave infrared snapshot multispectral imaging with a pixel-level spectral filter array[J]. Optics Express, 31, 21200-21211(2023).

    [23] CATRYSSE P B, ZHAO N, JIN W et al. Subwavelength Bayer RGB color routers with perfect optical efficiency[J]. Nanophotonics, 11, 2381-2387(2022).

    [24] HU H, XU N, XU H et al. Mid-wave infrared multispectral imaging by DOE[J]. Infrared Physics & Technology, 105198(2024).

    [25] XU N, ZHUGE Z, LI H et al. Color router-based long-wave infrared multispectral imaging[J]. Optics Express, 32, 36875-36887(2024).

    [26] URREA S, JACOME R, ASIF M S et al. DoDo: Double DOE optical system for multishot spectral imaging[J]. IEEE Journal of Selected Topics in Signal Processing, 18, 704-713(2024).

    [27] WU H, YI Y, ZHANG N et al. Inverse design broadband achromatic metasurfaces for longwave infrared[J]. Optical Materials, 148, 114923(2024).

    [28] CHEN W, ZHU A, SANJEEV V et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 13, 220-226(2018).

    [29] WANG S, WU P, SU V et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018).

    [30] DAI J, ZHAO J, CHENG Q et al. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface[J]. Light: Science & Applications, 7, 90(2018).

    [31] WEN D, YUE F, LI G et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 6, 8241(2015).

    [32] YUAN Q, GE Q, CHEN L et al. Recent advanced applications of metasurfaces in multi-dimensions[J]. Nanophotonics, 12, 2295-2315(2023).

    [33] STEWART J W, AKSELROD G M, SMITH D R et al. Toward multispectral imaging with colloidal metasurface pixels[J]. Advanced Materials, 29, 1602971(2017).

    [34] MEINZER N, BARNES W L, HOOPER I R. Plasmonic meta-atoms and metasurfaces[J]. Nature Photonics, 8, 889-898(2014).

    [35] JAHANI S, JACOB Z. All-dielectric metamaterials[J]. Nature Nanotechnology, 11, 23-36(2016).

    [36] ZHAO R, SAIN B, WEI Q et al. Multichannel vectorial holographic display and encryption[J]. Light: Science & Applications, 7, 95-9(2018).

    [37] FAN Z B, QIU H Y, ZHANG H L et al. A broadband achromatic metalens array for integral imaging in the visible[J]. Light: Science & Applications, 8, 67(2019).

    [38] YANG Y, WANG W, BOULESBAA A et al. Nonlinear fano-resonant dielectric metasurfaces[J]. Nano Letters, 15, 7388-7393(2015).

    [39] DEVLIN R C, AMBROSIO A, RUBIN N A et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 358, 896-901(2017).

    [40] ZOU X, ZHANG Y, LIN R et al. Pixel-level Bayer-type colour router based on metasurfaces[J]. Nature Communications, 13, 3288(2022).

    [41] HE H, ZHANG Y, SHAO Y et al. Meta-attention network based spectral reconstruction with snapshot near-infrared metasurface[J]. Advanced Materials, 36, 2313357(2024).

    [42] LI Z, YUAN X, FU L et al. Room temperature GaAsSb single nanowire infrared photodetectors[J]. Nanotechnology, 26, 445202(2015).

    [43] LI Z, YUAN X, GAO Q et al. In situ passivation of GaAsSb nanowires for enhanced infrared photoresponse[J]. Nanotechnology, 31, 244002(2020).

    [44] ZHANG F, ZHANG X, LI Z et al. A new strategy for selective area growth of highly uniform InGaAs/InP multiple quantum well nanowire arrays for optoelectronic device applications[J]. Advanced Functional Materials, 32, 2103057(2022).

    [45] LI Z, LI L, WANG F et al. Investigation of light–matter interaction in single vertical nanowires in ordered nanowire arrays[J]. Nanoscale, 14, 3527-3536(2022).

    [46] SVENSSON J, ANTTU N, VAINORIUS N et al. Diameter-dependent photocurrent in InAsSb nanowire infrared photodetectors[J]. Nano Letters, 13, 1380-1385(2013).

    [47] LI Z, HE Z, XI C et al. Review on III–V semiconductor nanowire array infrared photodetectors[J]. Advanced Materials Technologies, 8, 2202126(2023).

    [48] LIU Y, WEI N, ZENG Q et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability[J]. Advanced Optical Materials, 4, 238-245(2016).

    [49] AN Q, MENG X, XIONG K et al. A high-performance fully nanostructured individual CdSe nanotube photodetector with enhanced responsivity and photoconductive gain[J]. Journal of Materials Chemistry C, 5, 7057-7066(2017).

    [50] KUMAR R, KHAN M A, ANUPAMA A V et al. Infrared photodetectors based on multiwalled carbon nanotubes: Insights into the effect of nitrogen doping[J]. Applied Surface Science, 538, 148187(2021).

    [51] ZUO X, LI Z, WONG W W et al. Design of InAs nanosheet arrays with ultrawide polarization-independent high absorption for infrared photodetection[J]. Applied Physics Letters, 120, 071109(2022).

    [52] LI Z, ALLEN J, ALLEN M et al. Review on III-V semiconductor single nanowire-based room temperature infrared photodetectors[J]. Materials (Basel), 13, 1400(2020).

    [53] WEI S, LI Z, MURUGAPPAN K et al. A self-powered portable nanowire array gas sensor for dynamic NO2 monitoring at room temperature[J]. Advanced Materials, 35, 2207199(2023).

    [54] WEI S, LI Z, MURUGAPPAN K et al. Nanowire array breath acetone sensor for diabetes monitoring[J]. Advanced Science, 11, 2309481(2024).

    [55] LI Z, JIN W. Research progress of short-wavelength infrared polarization imaging technologies[J]. Journal of Applied Optics, 44, 643-654(2023).

    [56] LI Z, TRENDAFILOV S, ZHANG F et al. Broadband GaAsSb nanowire array photodetectors for filter-free multispectral imaging[J]. Nano Letters, 21, 7388-7395(2021).

    [57] PARK H, CROZIER K B. Multispectral imaging with vertical silicon nanowires[J]. Scientific Reports, 3, 2460(2013).

    [58] PARK H, DAN Y, SEO K et al. Filter-free image sensor pixels comprising silicon nanowires with selective color absorption[J]. Nano Letters, 14, 1804-1809(2014).

    [59] UM H-D, SOLANKI A, JAYARAMAN A et al. Electrostatically doped silicon nanowire arrays for multispectral photodetectors[J]. ACS Nano, 13, 11717-11725(2019).

    [60] ROGALSKI A, MARTYNIUK P, KOPYTKO M. InAs/GaSb type-II superlattice infrared detectors: Future prospect[J]. Applied Physics Reviews, 4, 031304(2017).

    [61] LI Z, AZIMI Z, LI Z et al. InAs nanowire arrays for room-temperature ultra-broadband infrared photodetection[J]. Nanoscale, 15, 10033-10041(2023).

    [62] YU Y, LI Z, ZHENG Z et al. Hybrid nanoantenna-nanopillar Si Schottky photodetectors for ultrawide wavelength-tunable photodetection[J]. Advanced Optical Materials, 2403246(2025).

    [63] CHEN P, MEI Y, LI H-Y et al. Nanoantenna integrated narrowband photodetector for infrared gas sensing[J]. Sensors and Actuators B: Chemical, 417, 136065(2024).

    [64] HO J, DONG Z, LEONG H S et al. Miniaturizing color-sensitive photodetectors via hybrid nanoantennas toward submicrometer dimensions[J]. Science Advances, 8, eadd3868(2022).

    [65] NAKOTTE T, MUNYAN S G, MURPHY J W et al. Colloidal quantum dot based infrared detectors: extending to the mid-infrared and moving from the lab to the field[J]. Journal of Materials Chemistry C, 10, 790-804(2022).

    [66] QU J, LIU P, GAN X. Silicon photoelectron chip integrated active devices based on colloidal quantum dots (Invited)[J]. Acta Optica Sinica, 44, 1513001-180(2024).

    [67] KRAMER I J, MINOR J C, MORENO-BAUTISTA G et al. Efficient spray-coated colloidal quantum dot solar cells[J]. Advanced Materials, 27, 116-121(2015).

    [68] MU G, TAN Y, BI C et al. Visible to mid-wave infrared PbS/HgTe colloidal quantum dot imagers[J]. Nature Photonics, 18, 1147-1154(2024).

    [69] TANG X, TANG X, LAI K W C. Scalable fabrication of infrared detectors with multispectral photoresponse based on patterned colloidal quantum dot films[J]. ACS Photonics, 3, 2396-2404(2016).

    [70] TANG X, ACKERMAN M M, CHEN M et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes[J]. Nature Photonics, 13, 277-282(2019).

    [71] AHN S, SHANG J Y, PATEL S K et al. Intercalated graphene and colloidal quantum dots for multispectral photodetection[J]. Advanced Functional Materials, 34, 2409523(2024).

    [73] NOVOSELOV K S, GEIM A K, MOROZOV S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [74] ZHANG J, ZHUANG J, CHEN Y. Study of graphene tunable infrared spectroscope photoelectric conversion integrated devices[J]. Micronanoelectronic Technology, 50, 1-5(2013).

    [75] ZHANG J, WU Z, ZHANG C. Study on the characteristics of integrating devices with splitting and photoelectric conversion of series of graphene and waveguide composite structure[J]. Optoelectronic Technology, 37, 48-51, 56(2017).

    [76] WANG X, FENG H, WU Y et al. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition[J]. Journal of the American Chemical Society, 135, 5304-5307(2013).

    [77] LEE Y, ZHANG X, ZHANG W et al. Synthesis of large‐area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials, 24, 2320-2325(2012).

    [78] WANG J, XU X, CHENG T et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire[J]. Nature Nanotechnology, 17, 33-38(2022).

    [79] WAN Y, LI E, YU Z et al. Low-defect-density WS2 by hydroxide vapor phase deposition[J]. Nature Communications, 13, 4149(2022).

    [80] SAHATIYA P, JONES S S, BADHULIKA S. 2D MoS2-carbon quantum dot hybrid based large area, flexible UV-vis-NIR photodetector on paper substrate[J]. Applied Materials Today, 10, 106-114(2018).

    [81] ZHAO S, CHENG Y, TAO L. Modulation and optoelectronic applications of van der Waals interlayer excitons[J]. ACS Photonics, 11, 2529-2545(2024).

    [82] QIN S, XU H, LIU M et al. Enhanced visible to near-infrared photodetectors made from MoS2-based mixed-dimensional structures[J]. Applied Surface Science, 585, 152594(2022).

    [83] TAO L, LI Z, CHEN K et al. A spontaneously formed plasmonic-MoTe2 hybrid platform for ultrasensitive Raman enhancement[J]. Cell Reports Physical Science, 2, 100526(2021).

    [84] TAO L, CHEN Z, LI X et al. Hybrid graphene tunneling photoconductor with interface engineering towards fast photoresponse and high responsivity[J]. NPJ 2D Materials and Applications, 1, 19(2017).

    [85] CHENG Y, QIU Z, ZHAO S et al. Multifunctional optoelectronic devices based on two-dimensional tellurium/MoS2 heterojunction[J]. Applied Physics Letters, 125, 171105(2024).

    [86] PAN W, LIU J, ZHANG Z et al. Large area van der Waals epitaxy of II–VI CdSe thin films for flexible optoelectronics and full-color imaging[J]. Nano Research, 15, 368-376(2021).

    [87] WU G, ABID M, ZERARA M et al. Miniaturized spectrometer with intrinsic long-term image memory[J]. Nature Communications, 15, 676(2024).

    [88] CHOI W, CHOUDHARY N, HAN G H et al. Recent development of two-dimensional transition metal dichalcogenides and their applications[J]. Materials Today, 20, 116-130(2017).

    [89] PAN M. Application progress of 2D perovskite materials in perovskite solar cell[J]. Petrochemical Technology, 53, 444-453(2024).

    [90] WEI J, LIU F. Advances of perovskite solar cells[J]. Crystals, 14, 862(2024).

    [91] LING Y, YUAN Z, TIAN Y. Bright light-emitting diodes based on organometal halide perovskite nanoplatelets[J]. Advanced Materials, 28, 305-311(2016).

    [92] BAI W, XUAN T, ZHAO H et al. Perovskite light-emitting diodes with an external quantum efficiency exceeding 30%[J]. Advanced Materials, 35, 2302283(2023).

    [93] HAN D, WANG J, AGOSTA L et al. Tautomeric mixture coordination enables efficient lead-free perovskite LEDs[J]. Nature, 622, 493-498(2023).

    [94] GUO Z, ZHANG J, LIU X et al. Optoelectronic synapses and photodetectors based on organic semiconductor/halide perovskite heterojunctions: Materials, devices, and applications[J]. Advanced Functional Materials, 33, 2305508(2023).

    [95] FERNÁNDEZ S, HU M, CONGREVE D N. Multifunctional displays with perovskite semiconductors[J]. Nature Electronics, 7, 332-333(2024).

    [96] BAO C, YUAN Z, NIU W et al. A multifunctional display based on photo-responsive perovskite light-emitting diodes[J]. Nature Electronics, 7, 375-382(2024).

    [97] SUTHERLAND B R, SARGENT E H. Perovskite photonic sources[J]. Nature Photonics, 10, 295-302(2016).

    [98] SHI W, TIAN H, LU Y. Research progress of metal halide perovskite nanometer optoelectronic materials[J]. Acta Physica Sinica, 70, 146-163(2021).

    [99] LIU J, HU D, NI M et al. Monolithic RGB–NIR perovskite photodetector for fused multispectral sensing and imaging[J]. The Journal of Physical Chemistry Letters, 13, 3659-3666(2022).

    [100] LIU Y, JI Z, CEN G et al. Perovskite-based color camera inspired by human visual cells[J]. Light: Science & Applications, 12, 43(2023).

    [101] CHEN C, LI Z, FU L. Perovskite photodetector-based single pixel color camera for artificial vision[J]. Light: Science & Applications, 12, 77(2023).

    [102] ZENG W, FENG L, LI G. Research progress on lead-free perovskite optoelectronic devices[J]. Laser & Infrared, 52, 627-635(2022).

    [103] LV Z, GAO H, HU Y et al. Ultraviolet–Visible-Near-Infrared broadband photodetector enabled by Cs2AgBiBr6: Sn/Conjugated polymer heterojunction[J]. ACS Applied Materials & Interfaces, 16, 51055-51064(2024).

    [104] LIU Y, GAO Y, ZHI J et al. All-inorganic lead-free NiOx/Cs3Bi2Br9 perovskite heterojunction photodetectors for ultraviolet multispectral imaging[J]. Nano Research, 15, 1094-1101(2022).

    [105] LI W, CHEN J, LIN H et al. The UV–vis-NIR broadband ultrafast flexible Sn-Pb perovskite photodetector for multispectral imaging to distinguish substance and foreign-body in biological tissues[J]. Advanced Optical Materials, 12, 2301373(2024).

    [106] SUN G, HUANG W, CHEN P. Advances in UAV-based multispectral remote sensing applications[J]. Transactions of the Chinese Society for Agricultural Machinery, 49, 1-17(2018).

    [107] JIANG B, PAN H, LIU Z. Cloud height estimation of ZY-3 multispectral images[J]. Remote Sensing Information, 38, 18-25(2023).

    [108] ZHU Bingxue, GHEN Shengbo, ZHOU Chao. Multi-spectral thick cloud detection method based on Landsat 8 image[J]. Geospatial Information, 16, 24-26(2018).

    [109] HU C, ZHANG Z, TANG P. Research on multispectral satellite image cloud and cloud shadow detection algorithm of domestic satellite[J]. National Remote Sensing Bulletin, 27, 623-634(2023).

    [110] LIU Z, WANG J, LU X. Retrieval of aerosol optical depth based on GF-14 multispectral data[J]. Remote Sensing Information, 39, 148-156(2024).

    [111] LISEIN J, MICHEZ A, CLAESSENS H et al. Discrimination of deciduous tree species from time series of unmanned aerial system imagery[J]. PloS One, 10, e0141006(2015).

    [112] PEREZ-ORTIZ M, PENA J, GUTIERREZ P et al. A semi-supervised system for weed mapping in sunflower crops using unmanned aerial vehicles and a crop row detection method[J]. Applied Soft Computing, 37, 533-544(2015).

    [113] DIAZ-VARELA R A, ZARCO-TEJADA P J, ANGILERI V et al. Automatic identification of agricultural terraces through object-oriented analysis of very high resolution DSMs and multispectral imagery obtained from an unmanned aerial vehicle[J]. Journal of Environmental Management, 134, 117-126(2014).

    [114] ZHA H, MIAO Y, WANG T et al. Improving unmanned aerial vehicle remote sensing-based rice nitrogen nutrition index prediction with machine learning[J]. Remote Sensing, 12, 215(2020).

    [115] LUO X, XIE T, DONG S. Estimation of citrus canopy chlorophyll based on UAV multispectral images[J]. Transactions of the Chinese Society for Agricultural Machinery, 54, 198-205(2023).

    [116] SONG Y, CHEN B, WANG Q. Monitoring of cotton Verticillium wilt based on unmanned aerial vehicle multispectral images[J]. Cotton Science, 35, 87-100(2023).

    [117] NARDIN W, TADDIA Y, QUITADAMO M et al. Seasonality and characterization mapping of restored Tidal Marsh by NDVI Imageries coupling UAVs and multispectral camera[J]. Remote Sensing, 13, 4207(2021).

    [118] LI S, XU Z, CHEN Z. Application of GF-3 satellite remote sensing image on Yellow River flood monitoring[J]. Water Resources Informatization, 22-26, 72(2017).

    [120] DUARTE M M, AZEVEDO L. Automatic detection and identification of floating marine debris using multispectral satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-15(2023).

    [121] BASU B, SANNIGRAHI S, BASU A S et al. Development of novel classification algorithms for detection of floating plastic debris in coastal waterbodies using multispectral Sentinel-2 remote sensing imagery[J]. Remote Sensing, 13, 1598(2021).

    [122] RONCHI D, LIMONGIELLO M, DEMETRESCU E et al. Multispectral UAV data and GPR survey for archeological anomaly detection supporting 3D reconstruction[J]. Sensors, 23, 2769(2023).

    [123] HEIBEL H D, HOOEY L, COCKERELL C J. A review of noninvasive techniques for skin cancer detection in dermatology[J]. American Journal of Clinical Dermatology, 21, 513-524(2020).

    [124] SINCLAIR S H, SCHWARTZ S. Diabetic retinopathy: New concepts of screening, monitoring, and interventions[J]. Survey of Ophthalmology, 69, 882-892(2024).

    [125] HONG K, LIU X, LI G et al. Detection of physical stress using multispectral imaging[J]. Neurocomputing, 329, 116-128(2019).

    [126] FENG X, LIU M, JIANG Y. Fire spot detection technology based on multispectral remote sensing images[J]. Radio Engineering, 51, 1195-1201(2021).

    [127] SUN Z, HU D, ZHOU T et al. Development of a multispectral spatial-frequency domain imaging system for property and quality assessment of fruits and vegetables[J]. Computers and Electronics in Agriculture, 214, 108251(2023).

    [128] COLANTONIO C, PELOSI C, D'ALESSANDRO L et al. Hypercolorimetric multispectral imaging system for cultural heritage diagnostics: an innovative study for copper painting examination[J]. European Physical Journal Plus, 133, 526(2018).

    Yingxiao MA, Ziyuan LI. Research progress of novel on-chip multispectral photodetectors (inner cover paper·invited)[J]. Infrared and Laser Engineering, 2025, 54(3): 20250042
    Download Citation