• Acta Photonica Sinica
  • Vol. 48, Issue 11, 1148005 (2019)
DONG You-ren1、2、3、* and WANG Xun-si1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/gzxb20194811.1148005 Cite this Article
    DONG You-ren, WANG Xun-si. Research Progress of Infrared Chalcogenide Microstructure Optical Fibers[J]. Acta Photonica Sinica, 2019, 48(11): 1148005 Copy Citation Text show less
    References

    [1] QIU Yuan-wu. The 21st century is the age of photons [J].Laser & Optoelectronics Progress, 2000, 409(1): 1-6.

    [2] EGGLETON B J, LUTHER-DAVIES B, RICHARDSON K. Chalcogenide photonics[J].Nature Photonics, 2011, 5(3): 141-148.

    [3] SU Ke-man, PAN Tie-ying, ZHANG Yu-lan. Spectral analysis [M].East China University of science and Technology Press, 2002

    [4] ZHANG Xiang-hua, BUREAU B, LUCAS P, et al. Glasses for seeing beyond visible[J].Chemistry-A European Journal, 2008, 14(2): 432-442.

    [5] KONDEPATI V R, HEISE M H. The potential of mid-and near-infrared spectroscopy for reliable monitoring of bioprocesses[J].Current Trends in Biotechnology and Pharmacy, 2008, 2(1): 117-132.

    [6] FRIDLUND C, CAPACCIONI F. Infrared space interferometry—the DARWIN mission[J].Advances in Space Research, 2002, 30(9): 2135-2145.

    [7] FORD E, SEAGER S, TURNER E. Characterization of extrasolar terrestrial planets from diurnal photometric variability[J].Nature, 2001, 412(6850): 885-887.

    [8] LEE K S, LEE Y K, JANG S H. A novel grating modulation technique for photonic bandgap fiber gas sensors[J].IEEE Photonics Technology Letters, 2011, 23(10): 624-626.

    [9] LIU Xiao-lu, DING Wei, WANG Ying-ying,et al. Characterization of a liquid-filled nodeless anti-resonant fiber for biochemical sensing[J].Optics Letters, 2017, 42(4): 863-866.

    [10] YAMAN M, YILDIRIM A, KANI K, et al. High selectivity boolean olfaction using hollow-core wavelength-scalable Bragg fibers[J].Analytical Chemistry, 2012, 84(1): 83-90.

    [11] KAPLAN I, GU Ying.Twenty years of CO2 laser surgery [J]. Chinese Journal of Laser Medicine & Surgery, 1993, 2(2): 102-103

    [12] JOHN M, JEWEL L, ISHWAR D. Determination of intrinsic mid-infrared absorption of a fluoride glass[J]. Optics Letters, 1991, 16(20): 1554-1556.

    [13] JIN Zhi-an, ZHANG Ai-dong, KOVALSKIY A , et al. A near-IR transmitting “black glass” synthesized from 70%TeO2-25%ZnO-5%ZnS[C]. IQEC, 2009.

    [14] ZHU Qing-de, WANG Xun-si, ZHANG Pei-qing,et al. Fabrication and optical properties of chalcogenide As2S3 suspended-core fiber[J].Acta Optica Sinica, 2015, 35(12): 1-8.

    [15] NISHII J , MORIMOTO S, INAGAWA I, et al. Recent advances and trends in chalcogenide glass fiber technology[J].Journal of Non-Crystalline Solids, 1992, 140(1): 199-208.

    [16] KAISER P, MARCATILI E A J, MILLER S E. A new optical fiber[J].Bell System Technical Journal, 1973, 52(2): 265-270.

    [17] SZPULAK M, FEVRIERB S.Chalcogenide As2S3 suspended core fiber for mid-IR wavelength conversion based on degenerate four-wave mixing [C]. SPIE, 2009, 7357: 73570F.

    [18] DUHANT M, RENARD W, CANAT G, et al. Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm[J].Optics Letters, 2011, 36(15): 2859-2861.

    [19] FINK Y, RIPIN D J, FAN S,et al. Guiding optical light in air using an all-dielectric structure[J].Journal of Lightwave Technology, 1999, 17(11): 2039-2041.

    [20] TEMELKURAN B, HART S D, BENOIT G, et al. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission[J].Nature, 2002, 420(6916): 650-653.

    [21] WANG Xu-de. Study on characteristics of photonics crystal fibers and its applications[D].Guangzhou: South China Normal University,2007.

    [22] FUERBACH A, STEINVURZEL P, BOLGER J, et al.Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers[J].Optics Express, 2005, 13(8): 2977-2987.

    [23] EI-AMRAOUI M, GADRET G, JULES J C, et.al. Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources[J].Optics Express, 2010, 18(25): 26655-26665.

    [24] BRILLAND L, CHARPENTIER F, TROLES J, et al. Microstructured chalcogenide fibers for biological and chemical detection: case study: a CO2 sensor[C]. SPIE, 2009, 7503: 750358.

    [25] PRUDENZANO F, MESCIA L, ALLEGRETTI L, et al. Simulation of mid-IR amplification in Er3+-doped chalcogenide microstructured optical fiber[J].Optical Materials Express, 2009, 31(9): 1292-1295.

    [26] ALEXANDER H, ALEXANDER M H, HARTMUT B. Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers[J].Optics Express, 2011, 19(13): 12275-12283.

    [27] CHEN Chao, CHEN He-ming, WANG Jing-li,et al. Study on loss characteristics of infrared hollow-core Bragg fibers[J]. Study on Optical Communications, 2012, 172(4): 33-35.

    [28] DING Wei, WANG Ying-ying, GAO Shou-fei,et al.Theoretical and experimental investigation of light guidance in hollow-core anti-resonant fiber[J].Acta Physica Sinica,2018, 67(12): 124201.

    [29] FENG Xian, MONRO T, PETROPOULOS P, et al. Solid microstructured optical fiber[J].Optics Express, 2003, 11(18): 2225-2230.

    [30] EI-AMRAOUI M, FATOME J, JULES J C, et al. Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers[J].Optics Express, 2010, 18(5): 4547-4556.

    [31] SY D L, DUC M N, MONIQUE T, et al. Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber[J].Optics Express, 2011, 19(26): 653-660.

    [32] DUHANT M, RENARD W, CANAT G, et al. Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm[J]. Optics Letters, 2011, 36(15): 2859-2861.

    [33] SAVELII I, SAVELII I, MOUAWAD O, et al. Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers[J].Optics Express, 2012, 20(24): 27083-27093.

    [34] GAO Wei-qing, MOHAMMED E, AMRAOU I, et al. Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber[J].Optics Express, 2013, 21(8): 9573-9583.

    [35] MOUAWAD O, PICOT C J, AMRANI F, et al. Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers[J].Optics Letters, 2014, 39(9): 2684-2687.

    [36] SCHARTNER E P, GEORIGIOS T, HENDERSON M R,et al. Quantification of the fluorescence sensing performance of microstructured optical fibers compared to multi-mode fiber tips[J].Optics Express, 2016, 24(16): 18541-18550.

    [37] BRENDA D, ANDREA C, MATTHIAS T, et al. Nanoparticle functionalised small-core suspended-core fibre - a novel platform for efficient sensing[J].Biomedical Optics Express, 2017, 8(2): 790-799.

    [38] BAI Hang-yu, YANG Xiong, WEI Yi-zhen, et al. Broadband mid-infrared fiber optical parametric oscillator based on a three-hole suspended-core chalcogenide fiber[J].Applied Optics, 2016, 55(3): 515-521.

    [39] GAO Peng-fei, LI Xiao-hui, LUO Wen-feng,et al.Numerical simulation of effect of pump wave length on mid-Infrared supercontinuum[J].Chinese Journal of Lasers, 2017, 44(7): 1-6.

    [40] YUAN Yuan, XIA Ke-lun, WANG Ying-ying, et al. Precision fabrication of a four-hole Ge15Sb15Se70 chalcogenide suspended-core fiber for generation of a 15-12 μm ultrabroad mid-infrared supercontinuum[J].Optical Materials Express, 2019, 9(5): 2196-2205.

    [41] XUE Zu-gang, LIU Shuo, ZHAO Zhe-ming, et al. Infrared suspended-core fiber fabrication based on stacked chalcogenide glass extrusion[J].Jouranl of Light Wave Technology, 2018, 36(12): 2416-2421.

    [42] WANG Lei-lei, MA Wen-qiang, ZHANG Pei-qing, et al. Mid-infrared gas detection using a chalcogenide suspended-core fiber [J].Journal of Lightwave Technology , 2019, 37(20): 5193-5198.

    [43] YEH P, YARIV A, MAROM E. Theory of Bragg fiber[J].Journal of the Optical Society of America, 1978, 68(9): 1196-1201.

    [44] YAN M, SHUM P. Analysis of perturbed Bragg fibers with an extended transfer matrix method[J].Optics Express, 2006, 14(7): 2596-2610.

    [45] XU Y, LEE R K, YARIV A. Asymptotic analysis of Bragg fibers[J].Optics Letters, 2000, 25(24): 1756-1758.

    [46] WANG Zhi, REN Guo-bin, LOU Shu-qin,et al. Compact supercell method based on opposite parity for Bragg fibers[J].Optics Express, 2003, 11(26): 3542-3549.

    [47] ISSA N A, PADDEN W E. Light acceptance properties of multimode microstructured optical fibers: Impact of multiple layers[J].Optics Express, 2004, 12(14): 3224-3235.

    [48] JOHNSON S G, IBANESCU M, SKOROBOGATI Y, et al. Low-loss asymptotically single-mode propagation in large-core omni guide fibers[J].Optics Express, 2001, 9(13): 748-779.

    [49] HART S D, MASKALY G R, TEMELKURAN B,et al. External reflection from omnidirectional dielectric mirror fibers[J].Science, 2002, 296(5567): 510-512.

    [50] SHI Ying-chao, ZHANG Wei, JIN Jie, et al.Fabrication of mid-infrared of hollow-core Bragg fiber and its application in gas sensing[J].Acta Physica Sinica, 2012, 61(5): 235-241.

    [51] JAMES F B,LAURENT V,MICHAEL M. Bragg fibers in systems for the generation of high peak power light: US,7593441[P].2009-09-22.

    [52] ZHANG X, BUREAU B, LUCAS P, et al. Glasses for seeing beyond visible[J].Chemistry-A European Journal, 2008, 14(2): 432-442.

    [53] KONDEPATI V R, HEISE M H. The potential of mid-and near-infrared spectroscopy for reliable monitoring of bioprocesses[J].Current Trends in Biotechnology and Pharmacy, 2008, 2(1): 117-132.

    [54] KNIGHT J C, BIRKS T A, CREGAN R F, et al. Large mode area photonic crystal fibre[J].Electronics Letters, 1998, 34: 1347-1348.

    [55] JOHANN T, CELINE C, GILLES R, et al.All-solid chalcogenide microstructuredoptical fibers with photonic band gap propagation[C]. Specialty Optical Fibers, Optical Society of America, 2014.

    [56] MBAYE D, ABDERRAHMEN T, MOURAD Z, Stimulated Brillouin scattering-based slow light using singlemode As2S3 chalcogenide photonic crystal fiber for temperature sensing[J].Frontiers in Optics / Laser Science,2019: JTu3A.63.

    [57] FRIDLUND C, CAPACCIONI F. Infrared space interferometry—the DARWIN mission[J].Advances in Space Research, 2002, 30(9): 2135-2145.

    [58] FORD E, SEAGAR S,TURNER E. Characterization of extrasolar terrestrial planets from diurnal photometric variability[J].Nature, 2001, 412(6850): 885-887.

    [59] KOSOLAPOV A F, PRYAMIKOV A D, BIRIUKOV A S, et al. Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negativecurvature hollow core[J].Optics Express, 2011, 19(25): 25723-25728.

    [60] GATTASS R R, RHONEHOUSE D, GIBSON D, et al. Infrared glass-based negative-curvature anti-resonant fibers fabricated through extrusion[J].Optics Express, 2016, 24(22): 25697-25703.

    [61] XIE Kang, ZHANG Wei, BOARDMAN A D , et al. Fiber guiding at the Dirac frequency beyond photonic bandgaps[J]. Science & Applications, 2015, 77(4): 1-8.

    [62] GEBHARDT M, GAIDA C, HEUERMANU T, et al. Nonlinear pulse compression to 43W GW-class few-cycle pulses at 2 μm wavelength[J].Optics Letters, 2017, 42(20): 4179-4182.

    [63] XU Meng-rong, YU Fei, KNIGHT J. Mid-infrared 1 W hollow-core fiber gas laser source[J].Optics Letters, 2017, 42(20): 4055-4058.

    [64] QUENTIN C, LAURENT B, PATRICK H, et al. Casting method for producing low-loss chalcogenide microstructured optical fibers[J].Optics Express, 2003, 11(18): 2225-2230.

    [65] LUAN F, GEORGE A K, HEDLEY T D, et al.All-solid photonic bandgap fiber[J].Optics Letters, 2004, 29(20): 2369-2371.

    [66] KUMAR V V R K, GEORGE A K,REEVES W H, et al. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation[J].Optics Express, 2002, 110(25): 1520-1525.

    [67] LI Yan-feng, HU Ming-lie, WANG Qing-yue. Supercontinuum generated from photonic crystal fiber and its applications[J].Journal of Optoelectronics· Laser, 2003, 14(11): 1240-1243.

    [68] ZHOU Gui-yao, HOU Zhi-yun, HOU Lan-tian, et al. Hollow-core tapered coupler for large inner diameter hollow-core optical fibers[J].Chinese Optics Letters, 2003, 1(1): 15-17.

    [69] EBENDORFF H H,MONRO T M, Extrusion of complex preforms for microstructured optical fibers[J].Optics Express, 2007, 15(23): 15086-15092.

    DONG You-ren, WANG Xun-si. Research Progress of Infrared Chalcogenide Microstructure Optical Fibers[J]. Acta Photonica Sinica, 2019, 48(11): 1148005
    Download Citation