• Acta Optica Sinica
  • Vol. 41, Issue 8, 0823016 (2021)
Lieyu Chen1、2, Zhancheng Li1、2, Hua Cheng1、2、*, Jianguo Tian1、2, and Shuqi Chen1、2、3、4、**
Author Affiliations
  • 1School of Physics, Nankai University, Tianjin 300071, China
  • 2Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics, Nankai University, Tianjin 300457, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • 4Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan, Shandong 250358, China
  • show less
    DOI: 10.3788/AOS202141.0823016 Cite this Article Set citation alerts
    Lieyu Chen, Zhancheng Li, Hua Cheng, Jianguo Tian, Shuqi Chen. Progress of Metasurface-Enabled Preparation and Manipulation of Quantum States[J]. Acta Optica Sinica, 2021, 41(8): 0823016 Copy Citation Text show less
    References

    [1] Yu T, Eberly J H. Finite-time disentanglement via spontaneous emission[J]. Physical Review Letters, 93, 140404(2004).

    [2] Bouwmeester D, Pan J W, Mattle K et al. Experimental quantum teleportation[J]. Nature, 390, 575-579(1997).

    [3] Polkinghorne R E S, Ralph T C. Continuous variable entanglement swapping[J]. Physical Review Letters, 83, 2095-2099(1999).

    [4] Huang Y P, Kumar P. Antibunched emission of photon pairs via quantum Zeno blockade[J]. Physical Review Letters, 108, 030502(2012).

    [5] Brown R H, Twiss R Q. Correlation between photons in two coherent beams of light[J]. Nature, 177, 27-29(1956).

    [6] He Y M, Clark G, Schaibley J R et al. Single quantum emitters in monolayer semiconductors[J]. Nature Nanotechnology, 10, 497-502(2015).

    [7] Hong C K, Ou Z Y, Mandel L. Measurement of subpicosecond time intervals between two photons by interference[J]. Physical Review Letters, 59, 2044-2046(1987).

    [8] Hijlkema M, Weber B, Specht H P et al. A single-photon server with just one atom[J]. Nature physics, 3, 253-255(2007).

    [9] Basché T, Moerner W E, Orrit M et al. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid[J]. Physical Review Letters, 69, 1516-1519(1992).

    [10] Jungwirth N R, Calderon B, Ji Y et al. Temperature dependence of wavelength selectable zero-phonon emission from sngle defects in hexagonal Boron Nitride[J]. Nano Letters, 16, 6052-6057(2016).

    [11] Kurtsiefer C, Mayer S, Zarda P et al. Stable solid-state source of single photons[J]. Physical Review Letters, 85, 290-293(2000).

    [13] Michler P, Kiraz A, Becher C et al. A quantum dot single-photon turnstile device[J]. Science, 290, 2282-2285(2000).

    [14] Curto A G, Volpe G, Taminiau T H et al. Unidirectional emission of a quantum dot coupled to a nanoantenna[J]. Science, 329, 930-933(2010).

    [15] Koenderink A F. Single-photon nanoantennas[J]. ACS Photonics, 4, 710-722(2017).

    [16] Tillmann M. Daki B, Heilmann R, et al. Experimental boson sampling[J]. Nature Photonics, 7, 540-544(2013).

    [17] Broome M A, Fedrizzi A, Rahimi-Keshari S et al. Photonic boson sampling in a tunable circuit[J]. Science, 339, 794-798(2013).

    [18] Crespi A, Osellame R, Ramponi R et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling[J]. Nature Photonics, 7, 545-549(2013).

    [19] Wang H, Li W, Jiang X et al. Toward scalable boson sampling with photon loss[J]. Physical Review Letters, 120, 230502(2018).

    [20] Wang H, Qin J, Ding X et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 10(14)-dimensional Hilbert space[J]. Physical Review Letters, 123, 250503(2019).

    [21] Liu Y, Chen T Y, Wang J et al. Decoy-state quantum key distribution with polarized photons over 200 km[J]. Optics Express, 18, 8587-8594(2010).

    [22] Pan J W, Bouwmeester D, Weinfurter H et al. Experimental entanglement swapping: entangling photons that never interacted[J]. Physical Review Letters, 80, 3891-3894(1998).

    [23] Zhong H S, Li Y, Li W et al. 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion[J]. Physical Review Letters, 121, 250505(2018).

    [24] Silverstone J W, Bonneau D, Ohira K et al. On-chip quantum interference between silicon photon-pair sources[J]. Nature Photonics, 8, 104-108(2014).

    [25] Grady N K, Heyes J E, Chowdhury D R et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 340, 1304-1307(2013).

    [26] Aieta F, Kats M A, Genevet P et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 347, 1342-1345(2015).

    [27] Chen S Q, Li Z, Zhang Y B et al. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics[J]. Advanced Optical Materials, 6, 1800104(2018).

    [28] Cui T J, Liu S, Li L L. Information entropy of coding metasurface[J]. Light, Science & Applications, 5, e16172(2016).

    [29] Liu S, Cui T J, Zhang L et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams[J]. Advanced Science, 3, 1600156(2016).

    [30] Yu N, Aieta F, Genevet P et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 12, 6328-6333(2012).

    [31] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 4, 2807(2013).

    [32] Lin J, Genevet P, Kats M A et al. Nanostructured holograms for broadband manipulation of vector beams[J]. Nano Letters, 13, 4269-4274(2013).

    [33] Liu L X, Zhang X Q, Kenney M et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Advanced Materials, 26, 5031-5036(2014).

    [34] Almeida E, Shalem G, Prior Y. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces[J]. Nature Communications, 7, 10367(2016).

    [35] Ye W, Zeuner F, Li X et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nature Communications, 7, 11930(2016).

    [36] Tran T T, Wang D Q, Xu Z Q et al. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays[J]. Nano Letters, 17, 2634-2639(2017).

    [37] Kan Y H. Andersen S K H, Ding F, et al. Metasurface-enabled generation of circularly polarized single photons[J]. Advanced Materials, 32, 1907832(2020).

    [38] Bao Y J, Lin Q L, Su R B et al. 6(31): eaba8761(2020).

    [39] Li L, Liu Z, Ren X et al. Metalens-array-based high-dimensional and multiphoton quantum source[J]. Science, 368, 1487-1490(2020).

    [40] Marino G, Solntsev A S, Xu L et al. Spontaneous photon-pair generation from a dielectric nanoantenna[J]. Optica, 6, 1416-1422(2019).

    [41] Stav T, Faerman A, Maguid E et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials[J]. Science, 361, 1101-1104(2018).

    [42] Wang K, Titchener J G, Kruk S S et al. Quantum metasurface for multiphoton interference and state reconstruction[J]. Science, 361, 1104-1108(2018).

    [43] Georgi P, Massaro M, Luo K H et al. Metasurface interferometry toward quantum sensors[J]. Light, Science & Applications, 8, 70(2019).

    [44] Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 79, 076401(2016).

    [45] Aieta F, Genevet P, Yu N et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities[J]. Nano Letters, 12, 1702-1706(2012).

    [46] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [47] Shalaev M I, Sun J B, Tsukernik A et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode[J]. Nano Letters, 15, 6261-6266(2015).

    [48] Liu X L, Starr T, Starr A F et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance[J]. Physical Review Letters, 104, 207403(2010).

    [49] Yu N F, Genevet P, Aieta F et al. Flat optics: controlling wavefronts with optical antenna metasurfaces[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 4700423(2013).

    [50] Zheludev N I, Kivshar Y S. From metamaterials to metadevices[J]. Nature Materials, 11, 917-924(2012).

    [51] Meinzer N, Barnes W L, Hooper I R. Plasmonic meta-atoms and metasurfaces[J]. Nature Photonics, 8, 889-898(2014).

    [52] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 13, 139-150(2014).

    [53] Liu Z C, Li Z C, Liu Z et al. Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle[J]. ACS Photonics, 4, 2061(2017).

    [54] Li J X, Yu P, Tang C C et al. Bidirectional perfect absorber using free substrate plasmonic metasurfaces[J]. Advanced Optical Materials, 5, 1700152(2017).

    [55] Yu P, Li J, Tang C et al. Controllable optical activity with non-chiral plasmonic metasurfaces[J]. Light, Science & Applications, 5, e16096(2016).

    [56] Sun S, Yang K Y, Wang C M et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 12, 6223-6229(2012). http://europepmc.org/abstract/MED/23189928

    [57] Zheng G, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).

    [58] Yue F Y, Wen D D, Xin J T et al. Vector vortex beam generation with a single plasmonic metasurface[J]. ACS Photonics, 3, 1558-1563(2016).

    [59] Li Z C, Liu W W, Cheng H et al. Simultaneous generation of high-efficiency broadband asymmetric anomalous refraction and reflection waves with few-layer anisotropic metasurface[J]. Scientific Reports, 6, 35485(2016).

    [60] Cheng H, Liu Z C, Chen S Q et al. Emergent functionality and controllability in few-layer metasurfaces[J]. Advanced Materials, 27, 5410-5421(2015).

    [61] Li Z C, Liu W W, Cheng H et al. Few-layer metasurfaces with arbitrary scattering properties[J]. Science China Physics, Mechanics Astronomy, 63, 284202(2020).

    [62] Genevet P, Capasso F, Aieta F et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 4, 139-152(2017).

    [63] Kruk S, Kivshar Y. Functional meta-optics and nanophotonics governed by Mie resonances[J]. ACS Photonics, 4, 2638-2649(2017).

    [64] Balthasar Mueller J P, Rubin N A, Devlin R C et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 118, 113901(2017).

    [65] Khorasaninejad M, Zhu A Y, Roques-Carmes C et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Letters, 16, 7229-7234(2016).

    [66] Khorasaninejad M, Shi Z, Zhu A Y et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 17, 1819-1824(2017).

    [67] Lin D M, Fan P Y, Hasman E et al. Dielectric gradient metasurface optical elements[J]. Science, 345, 298-302(2014).

    [68] Arbabi A, Horie Y, Ball A J et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 6, 7069(2015).

    [69] Wang L, Kruk S, Tang H Z et al. Grayscale transparent metasurface holograms[J]. Optica, 3, 1504-1505(2016).

    [70] Yang B, Liu W W, Li Z C et al. Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels[J]. Advanced Optical Materials, 6, 1701009(2018). http://onlinelibrary.wiley.com/doi/full/10.1002/adom.201701009

    [71] Yang B, Liu W W, Li Z C et al. Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces[J]. Nano Letters, 19, 4221-4228(2019).

    [72] Zhang Y B, Liu W W, Li Z C et al. High-quality-factor multiple Fano resonances for refractive index sensing[J]. Optics Letters, 43, 1842-1845(2018).

    [73] Liu W W, Li Z C, Cheng H et al. Metasurface enabled wide-angle Fourier lens[J]. Advanced Materials, 30, 1706368(2018). http://www.ncbi.nlm.nih.gov/pubmed/29672964

    [74] Liu W W, Li Z C, Li Z et al. Energy-tailorable spin-selective multifunctional metasurfaces with full Fourier components[J]. Advanced Materials, 31, 1901729(2019).

    [75] Zuo R Z, Liu W W, Cheng H et al. Breaking the diffraction limit with radially polarized light based on dielectric metalenses[J]. Advanced Optical Materials, 6, 1800795(2018).

    [76] Marino G, Gigli C, Rocco D et al. Zero-order second harmonic generation from AlGaAs-on-insulator metasurfaces[J]. ACS Photonics, 6, 1226-1231(2019).

    [77] Wang L, Kruk S, Koshelev K et al. Nonlinear wavefront control with all-dielectric metasurfaces[J]. Nano Letters, 18, 3978-3984(2018).

    [78] Choy J T, Bulu I. Hausmann B J M, et al. Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings[J]. Applied Physics Letters, 103, 161101(2013).

    [79] Eisaman M D, Fan J, Migdall A et al. Single-photon sources and detectors[J]. The Review of Scientific Instruments, 82, 071101(2011).

    [80] Lodahl P, Mahmoodian S, Stobbe S et al. Chiral quantum optics[J]. Nature, 541, 473-480(2017).

    [81] Javadi A, Ding D P, Appel M H et al. Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide[J]. Nature Nanotechnology, 13, 398-403(2018).

    [82] Ortner G, Bayer M, Larionov A et al. Fine structure of excitons in InAs/GaAs coupled auantum dots: a sensitive test of electronic coupling[J]. Physical Review Letters, 90, 086404(2003).

    [83] Braukmann D, Popov V P, Glaser E R et al. Anisotropies in the linear polarization of vacancy photoluminescence in diamond induced by crystal rotations and strong magnetic fields[J]. Physical Review B, 97, 125426(2018).

    [84] Claudon J, Bleuse J, Malik N S et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire[J]. Nature Photonics, 4, 174-177(2010).

    [85] Heeg K P, Wille H C, Schlage K et al. Vacuum-assisted generation and control of atomic coherences at X-ray energies[J]. Physical Review Letters, 111, 073601(2013).

    [86] Agarwal G S. Anisotropic vacuum-induced interference in decay channels[J]. Physical Review Letters, 84, 5500-5503(2000).

    [87] Yannopapas V, Paspalakis E, Vitanov N V. Plasmon-induced enhancement of quantum interference near metallic nanostructures[J]. Physical Review Letters, 103, 063602(2009).

    [88] Li G X, Li F L, Zhu S Y. Quantum interference between decay channels of a three-level atom in a multilayer dielectric medium[J]. Physical Review A, 64, 013819(2001).

    [89] Jha P K, Ni X J, Wu C H et al. Metasurface-enabled remote quantum interference[J]. Physical Review Letters, 115, 025501(2015).

    [90] Yang B, Cheng H, Chen S Q et al. Multi-dimensional manipulation of optical field by metasurfaces based on Fourier analysis[J]. Acta Optica Sinica, 39, 0126005(2019).

    [91] Chen S Q, Li Z C, Liu W W et al. From single-dimensional to multidimensional manipulation of optical waves with metasurfaces[J]. Advanced Materials, 31, 1802458(2019).

    [92] Chen S Q, Liu W W, Li Z C et al. Metasurface-empowered optical multiplexing and multifunction[J]. Advanced Materials, 32, 1805912(2020).

    [93] Poddubny A N, Iorsh I V, Sukhorukov A A. Generation of photon-plasmon quantum states in nonlinear hyperbolic metamaterials[J]. Physical Review Letters, 117, 123901(2016).

    [94] Lenzini F, Poddubny A N, Titchener J et al. Direct characterization of a nonlinear photonic circuit's wave function with laser light[J]. Light, Science & Applications, 7, 17143(2018).

    [95] Bekenstein R, Pikovski I, Pichler H et al. Quantum metasurfaces with atom arrays[J]. Nature Physics, 16, 676-681(2020).

    [96] James D F V, Kwiat P G, Munro W J et al. Measurement of qubits[J]. Physical Review A, 64, 052312(2001).

    [97] Jack B, Leach J, Ritsch H et al. Precise quantum tomography of photon pairs with entangled orbital angular momentum[J]. New Journal of Physics, 11, 103024(2009).

    [98] Titchener J G, Gräfe M, Heilmann R et al. Scalable on-chip quantum state tomography[J]. Npj Quantum Information, 4, 19(2018).

    [99] Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology[J]. Nature Photonics, 5, 222-229(2011).

    [100] Li Z C, Liu W W, Cheng H et al. Manipulation of the photonic spin Hall effect with high efficiency in gold-nanorod-based metasurfaces[J]. Advanced Optical Materials, 5, 1700413(2017).

    [101] Li Z, Liu W W, Geng G Z et al. Multiplexed nondiffracting nonlinear metasurfaces[J]. Advanced Functional Materials, 30, 1910744(2020).

    [102] Zhang Y B, Li Z C, Liu W W et al. Spin-selective and wavelength-selective demultiplexing based on waveguide-integrated all-dielectric metasurfaces[J]. Advanced Optical Materials, 7, 1801273(2019).

    [103] Cheng H, Wei X Y, Yu P et al. Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces[J]. Applied Physics Letters, 110, 171903(2017).

    [104] Ma M L, Li Z, Liu W W et al. Optical information multiplexing with nonlinear coding metasurfaces[J]. Laser & Photonics Reviews, 13, 1900045(2019).

    [105] Li Z, Liu W W, Li Z C et al. Tripling the capacity of optical vortices by nonlinear metasurface[J]. Laser & Photonics Reviews, 12, 1800164(2018).

    [106] Li Z C, Liu W W, Cheng H et al. Spin-selective full-dimensional manipulation of optical waves with chiral mirror[J]. Advanced Materials, 32, 1907983(2020).

    Lieyu Chen, Zhancheng Li, Hua Cheng, Jianguo Tian, Shuqi Chen. Progress of Metasurface-Enabled Preparation and Manipulation of Quantum States[J]. Acta Optica Sinica, 2021, 41(8): 0823016
    Download Citation