• Laser & Optoelectronics Progress
  • Vol. 50, Issue 3, 30008 (2013)
Zhang Liang*, Zhang Wei, Nie Qiuhua, Dai Shixun, and Chen Yu
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop50.030008 Cite this Article Set citation alerts
    Zhang Liang, Zhang Wei, Nie Qiuhua, Dai Shixun, Chen Yu. Research Progress of Two-Dimensional Photonic Crystal Waveguides[J]. Laser & Optoelectronics Progress, 2013, 50(3): 30008 Copy Citation Text show less
    References

    [1] S. John. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys. Rev. Lett., 1987, 58(23): 2486~2489

    [2] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett., 1987, 58(20): 2059~2062

    [3] Kuai Sulan, Zhang Yuzhi, Hu Xingfang. Band structures, applications and preparations of photonic crystals[J]. J. Inorganic Materials, 2001, 16(2): 193~199

    [4] P. Russell. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358~362

    [5] R. D. Meade, A. Devenyi, J. Joannopoulos et al.. Novel applications of photonic band gap materials: low-loss bends and high Q cavities[J]. J. Appl. Phys., 1994, 75(9): 4753~4755

    [6] Y. Zhang, Z. Li, B. Li. Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves[J]. Opt. Express, 2006, 14(7): 2679~2689

    [7] D. Modotto, M. Conforti, A. Locatelli et al.. Imaging properties of multimode photonic crystal waveguides and waveguide arrays[J]. J. Lightwave Technol., 2007, 25(1): 402~409

    [8] Y. Zhao, Y. Zhang, Q. Wang. High sensitivity gas sensing method based on slow light in photonic crystal waveguide[J]. Sensors and Actuators B, 2012, 173: 28~31

    [9] C. Husko, T. Vo, B. Corcoran et al.. Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide[J]. Opt. Express, 2011, 19(21): 20681~20690

    [10] J. K. Yang, H. Noh, M. J. Rooks et al.. Lasing in localized modes of a slow light photonic crystal waveguide[J]. Appl. Phys. Lett., 2011, 98(24): 241107

    [11] T. Baba, T. Kawaaski, H. Sasaki et al.. Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide[J]. Opt. Express, 2008, 16(12): 9245~9253

    [12] T. F. Krauss. Slow light in photonic crystal waveguides[J]. J. Phys. D: Appl. Phys., 2007, 40(9): 2666~2670

    [13] M. Shinkawa, N. Ishikura, Y. Hama et al.. Nonlinear enhancement in photonic crystal slow light waveguides fabricated using CMOS-compatible process[J]. Opt. Express, 2011, 19(22): 22208~22218

    [14] C. Monat, B. Corcoran, M. Ebnali-Heidari et al.. Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides[J]. Opt. Express, 2009, 17(4): 2944~2953

    [15] A. Baron, A. Ryasnyanskiy, N. Dubreuil et al.. Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide[J]. Opt. Express, 2009, 17(2): 552~557

    [16] Cui Naidi, Liang Jingqiu, Liang Zhongzhu et al.. Photonic crystals and 2-D photonic crystal waveguides[J]. OME Information, 2009, 26(10): 19~27

    [17] W. Kuang, C. Kim, A. Stapleton et al.. Calculated out-of-plane transmission loss for photonic-crystal slab waveguides[J]. Opt. Lett., 2003, 28(19): 1781~1783

    [18] M. Kotlyar, T. Karle, M. Settle et al.. Low-loss photonic crystal defect waveguides in InP[J]. Appl. Phys. Lett., 2004, 84(18): 3588~3590

    [19] A. Di Falco, M. Massari, M. Scullion et al.. Propagation losses of slotted photonic crystal waveguides[J]. IEEE Photon. J., 2012, 4(5): 1536~1541

    [20] Y. Hamachi, S. Kubo, T. Baba. Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide[J]. Opt. Lett., 2009, 34(7): 1072~1074

    [21] T. F. Krauss, R. M. D. L. Rue, S. Brand. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths[J]. Nature, 1996, 383(6602): 699~702

    [22] L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen et al.. Photonic crystal waveguides with semi-slow light and tailored dispersion properties[J]. Opt. Express, 2006, 14(20): 9444~9450

    [23] A. M. Malvezzi, F. Cattaneo, G. Vecchi et al.. Second-harmonic generation in reflection and diffraction by a GaAs photonic-crystal waveguide[J]. J. Opt. Soc. Am. B, 2002, 19(9): 2122~2128

    [24] W. Jia, J. Deng, H. Wu et al.. Design and fabrication of high-efficiency photonic crystal power beam splitters[J]. Opt. Lett., 2011, 36(20): 4077~4079

    [25] M. Shih, W. Kim, W. Kuang et al.. Two-dimensional photonic crystal Mach-Zehnder interferometers[J]. Appl. Phys. Lett., 2004, 84(4): 460~462

    [26] K. Suzuki, Y. Hamachi, T. Baba. Fabrication and characterization of chalcogenide glass photonic crystal waveguides[J]. Opt. Express, 2009, 17(25): 22393~22400

    [27] C. Liguda, G. Bottger, A. Kuligk et al.. Polymer photonic crystal slab waveguides[J]. Appl. Phys. Lett., 2001, 78(17): 2434~2436

    [28] Xie Lingyun, Zhang Yejin, Peng Xiaozhou et al.. Study on SOI-based photonic crystal waveguides[J]. Semiconductor Optoelectronics, 2003, 24(6): 392~395

    [29] Zhou Changzhu, Liu Yazhao, Li Zhiyuan. Waveguide bend of 90° in two-dimensional triangular lattice silicon photonic crystal slabs[J]. Chin. Phys. Lett., 2010, 27(8): 084203

    [30] Han Shouzhen, Tian Jie, Feng Shuai et al.. Fabrication of straight waveguide in two-dimensional photonic crystal slab and its light propagation characteristics[J]. Acta Physica Sinica, 2005, 54(12): 5659~5662

    [31] M. Mulot, A. Syntjoki, S. Arpiainen et al.. Slow light propagation in photonic crystal waveguides with ring-shaped holes[J]. J. Opt. A: Pure Appl. Opt., 2007, 9(9): S415~S418

    [32] A. Xing, M. Darvanco, D. J. Blumenthal et al.. InP photonic crystal membrane structures: fabrication accuracy and optical performance[J]. Appl. Phys. Lett., 2004, 85(4): 522~524

    [33] P. Borel, L. Frandsen, M. Thorhauge et al.. Efficient propagation of TM polarized light in photonic crystal components exhibiting band gaps for TE polarized light[J]. Opt. Express, 2003, 11(15): 1757~1762

    [34] J. Li, Y. Liu, X. Xie et al.. Fabrication of photonic crystals with functional defects by one-step holographic lithography[J]. Opt. Express, 2008, 16(17): 12899~12904

    [35] T. Tada, V. V. Poborchii, T. Kanayama. Channel waveguides fabricated in 2D photonic crystals of Si nanopillars[J]. Microelectronic Engineering, 2002, 63(1): 259~265

    [36] T. Baba, A. Motegi, T. Iwai et al.. Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate[J]. IEEE J. Quant. Electron., 2002, 38(7): 743~752

    [37] L. Ofaolain, X. Yuan, D. McIntyre et al.. Low-loss propagation in photonic crystal waveguides[J]. Electron. Lett., 2006, 42(25): 1454~1455

    [38] R. Kappeler, P. Kaspar, H. Jackel. Loss-relevant structural imperfections in substrate-type photonic crystal waveguides[J]. J. Lightwave Technol., 2011, 29(21): 3156~3166

    [39] T. White, L. O′Faolain, J. Li et al.. Silica-embedded silicon photonic crystal waveguides[J]. Opt. Express, 2008, 16(21): 17076~17081

    [40] K. Inoue, Y. Sugimoto, N. Ikeda et al.. Ultra-small GaAs-photonic-crystal-slab-waveguide-based near-infrared components: fabrication, guided-mode identification, and estimation of low-loss and broad-band-width in straight-waveguides, 60° bends and Y-splitters[J]. Jpn. J. Appl. Phys., 2004, 43(9A): 6112~6114

    [41] N. Ikeda, Y. Sugimoto, Y. Tanaka et al.. Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes[J]. IEEE J. Sel. Areas in Commun., 2005, 23(7): 1315~1320

    [42] J. Zimmermann, M. Kamp, R. Schwertberger et al.. Efficient light transmission through InP-based photonic crystal waveguides[J]. Electron. Lett., 2002, 38(4): 178~180

    [43] P. Ma, P. Kaspar, Y. Fedoryshyn et al.. InP. ased planar photonic crystal waveguide in honeycomb lattice geometry for TM-polarized light[J]. Opt. Lett., 2009, 34(10): 1558~1560

    [44] P. Kaspar, R. Kappeler, H. Jckel et al.. Toward low-loss photonic crystal waveguides in InP/InGaAsP heterostructures[J]. Opt. Lett., 2012, 37(17): 3717~3719

    [45] J. H. Chen, Y. T. Huang, Y. L. Yang et al.. Design, Fabrication, and characterization of Si-based ARROW-B photonic crystal sharp-bend waveguides and power splitters[J]. J. Lightwave Technol., 2012, 30(14): 2345~2351

    [46] X. Gai, T. Han, A. Prasad et al.. Progress in optical waveguides fabricated from chalcogenide glasses[J]. Opt. Express, 2010, 18(25): 26635~26646

    [47] M. Shih, W. J. Kim, W. Kuang et al.. Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides[J]. Appl. Phys. Lett., 2005, 86(19): 191104

    [48] S. Bakhshi, M. K. Moravvej-Farshi, M. Ebnali-Heidari. Proposal for enhancing the transmission efficiency of photonic crystal 60° waveguide bends by means of optofluidic infiltration[J]. Appl. Opt., 2011, 50(21): 4048~4053

    [49] L. B. Soldano, E. C. M. Pennings. Optical multi-mode interference devices based on self-imaging: principles and applications[J]. J. Lightwave Technol., 1995, 13(4): 615~627

    [50] A. Martinez, F. Cuesta, J. Marti. Ultrashort 2-D photonic crystal directional couplers[J]. IEEE Photon. Technol. Lett., 2003, 15(5): 694~696

    [51] Xu Xuming, Li Wei, Fang Liguang et al.. Self-imaging based multimode interference photonic crystal waveguide 1×2 splitter[J]. Study on Optical Communications, 2008, 34(6): 34~36

    [52] S. Boscolo, M. Midrio, C. G. Someda. Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides[J]. IEEE J. Quant. Electron., 2002, 38(1): 47~53

    [53] Jin Xiaojun. The Study on Characteristics of Multi-Wavelength Photonic Crystal Wavelength Division Multiplexers Based on Multimode Interference Theory[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2011. 30~56

    [54] M. Povinelli, S. Johnson, J. Joannopoulos. Slow-light, band-edge waveguides for tunable time delays[J]. Opt. Express, 2005, 13(18): 7145~7159

    [55] C. Liu, Z. Dutton, C. H. Behroozi et al.. Observation of coherent optical information storage in an atomic medium using halted light pulses[J]. Nature, 2001, 409(6819): 490~493

    [56] H. Gersen, T. Karle, R. Engelen et al.. Real-space observation of ultraslow light in photonic crystal waveguides[J]. Phys. Rev. Lett., 2005, 94(7): 073903

    [57] T. Baba. Slow light in photonic crystals[J]. Nature Photon., 2008, 2(8): 465~473

    [58] L. V. Hau, S. E. Harris, Z. Dutton et al.. Light speed reduction to 17 metres per second in an ultracold atomic gas[J]. Nature, 1999, 397(6720): 594~598

    [59] M. Notomi, K. Yamada, A. Shinya et al.. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs[J]. Phys. Rev. Lett., 2001, 87(25): 253902

    [60] Y. A. Vlasov, M. O'Boyle, H. F. Hamann et al.. Active control of slow light on a chip with photonic crystal waveguides[J]. Nature, 2005, 438(7064): 65~69

    [61] J. Li, T. P. White, L. O′Faolain et al.. Systematic design of flat band slow light in photonic crystal waveguides[J]. Opt. Express, 2008, 16(9): 6227~6232

    [62] S. Rahimi, A. Hosseini, X. Xu et al.. Group-index independent coupling to band engineered SOI photonic crystal waveguide with large slow-down factor[J]. Opt. Express, 2011, 19(22): 21832~21841

    [63] A. Casas-Bedoya, C. Husko, C. Monat et al.. Slow light dispersion engineering of photonic crystal waveguides using selective microfluidic infiltration[J]. Opt. Lett., 2012, 37(20): 4215~4217

    [64] A. Syntjoki, M. Mulot, J. Ahopelto et al.. Dispersion engineering of photonic crystal waveguides with ring-shaped holes[J]. Opt. Express, 2007, 15(13): 8323~8328

    [65] B. Meng, L. Wang, W. Huang et al.. Wideband and low dispersion slow-light waveguide based on a photonic crystal with crescent-shaped air holes[J]. Appl. Opt., 2012, 51(23): 5735~5742

    [66] L. Dai, T. Li, C. Jiang. Wideband ultralow high-order-dispersion photonic crystal slow-light waveguide[J]. J. Opt. Soc. Am. B, 2011, 28(7): 1622~1626

    [67] D. Mori, T. Baba. Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide[J]. Opt. Express, 2005, 13(23): 9398~9408

    [68] Zhang Wei, Wang Zhiyong, Wang Wenchao et al.. Investigation on wideband slow light based on photonic-crystal coupled waveguides[J]. Acta Optica Sinica, 2012, 32(2): 162~166

    [69] T. Han, S. Madden, S. Debbarma et al.. Improved method for hot embossing As2S3 waveguides employing a thermally stable chalcogenide coating[J]. Opt. Express, 2011, 19(25): 25447~25453

    [70] Z. G. Lian, W. Pan, D. Furniss et al.. Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films[J]. Opt. Lett., 2009, 34(8): 1234~1236

    [71] Zhang Wei, Chen Yu, Fu Jing et al.. Study on fabrication and optical properties of Ge-Sb-Se thin film[J]. Acta Physica Sinica, 2012, 61(5): 056801

    [72] A. Seddon, W. Pan, D. Furniss et al.. Fine embossing of chalcogenide glasses-a new fabrication route for photonic integrated circuits[J]. J. Non-Cryst. Solids, 2006, 352(23): 2515~2520

    [73] K. Suzuki, T. Baba. Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides[J]. Opt. Express, 2010, 18(25): 26675~26685

    [74] C. Monat, M. Spurny, C. Grillet et al.. Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides[J]. Opt. Lett., 2011, 36(15): 2818~2820

    [75] C. Grillet, C. L. C. Smith, D. Freeman et al.. Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires[J]. Opt. Express, 2006, 14(3): 1070~1078

    [76] C. Smith, C. Grillet, S. Tomljenovic-Hanic et al.. Characterisation of chalcogenide 2D photonic crystal waveguides and nanocavities using silica fibre nanowires[J]. Physica B: Condensed Matter, 2007, 394(2): 289~292

    [77] M. W. Lee, C. Grillet, C. L. C. Smith et al.. Photosensitive post-tuning of chalcogenide photonic crystal waveguides[J]. Opt. Express, 2007, 15(3): 1277~1285

    [78] D. Freeman, S. Madden, B. Luther-Davies. Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam[J]. Opt. Express, 2005, 13(8): 3079~3086

    [79] M. Spurny, L. O′Faolain, D. A. P. Bulla et al.. Fabrication of low loss dispersion engineered chalcogenide photonic crystals[J]. Opt. Express, 2011, 19(3): 1991~1996

    [80] E. Dulkeith, Y. A. Vlasov, X. Chen et al.. Self-phase-modulation in submicron silicon-on-insulator photonic wires[J]. Opt. Express, 2006, 14(12): 5524~5534

    CLP Journals

    [1] Liu Dan, Tong Aihong, Xiao Ming, Wang Yun, Hu Sen. Optimizing Design for GaN-Based Light Emitting Diodes with Photonic Crystal Slab[J]. Laser & Optoelectronics Progress, 2014, 51(12): 122303

    [2] Cai Yuanyuan, Chen Xiao, Li Ning, Li Changwei, Wang Yiquan. Electrical Pumping Organic Quasi-Crystal Laser and its Properties[J]. Acta Optica Sinica, 2015, 35(6): 614002

    [3] Zhu Huaxin, Guo Ying, Li Shuai, Sun Yajun. Study on a Novel Frequency Selective Surface Element[J]. Laser & Optoelectronics Progress, 2014, 51(10): 101602

    [4] Zhang Zhenying, Chen Fen, Nie Qiuhua, Wang Yonghui, Chen Yu, Shen Xiang, Dai Shixun. Research Progress on Nonlinear Application of Chalcogenide Optical Waveguide[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120003

    [5] Ma Luming, Hu Jinbing, Jiang Qiang, Liang Binming, Chen Jiabi, Zhuang Songlin. Analysis of Equi-Phase Frequency Spectrum in Photonic Crystal Based on FDTD Method[J]. Laser & Optoelectronics Progress, 2015, 52(6): 61602

    [6] Zhao Nianshun, Guan Junming. Analysis of Transmission Characteristics in Photonic Crystal Point Defects Based on Numerical Simulation Technology[J]. Laser & Optoelectronics Progress, 2014, 51(4): 42302

    [7] Lü Sheqin, Li Chaoran, Wu Yuehao, Zhang Peiqing, Wang Xunsi, Shen Xiang, Zhang Wei, Dai Shixun. Research Progress of Micro/nano-Optical Device Based on Chalcogenide Glass[J]. Laser & Optoelectronics Progress, 2014, 51(5): 50001

    [8] Wei Fengjuan, Zhang Wei, Han Jintao, Wang Xianwang, Wu Yuehao, Zhang Peiqing, Dai Shixun, Nie Qiuhua. Transmission Characteristics and Structure Optimization of 60° Bent Chalcogenide Photonic Crystal Waveguides[J]. Chinese Journal of Lasers, 2015, 42(12): 1205001

    [9] Zhang Guohao, Chen Yuegang. New Coupler for Exciting Symmetric and Antisymmetric Plasmon Modes in Double-Wire Transmission Lines[J]. Acta Optica Sinica, 2015, 35(11): 1113003

    [10] Wang Xianwang, Zhang Wei, Zhang Liang, Li Junjian, Xu Tiefeng. Research Progress of Fabrication of Chalcogenide Glass Photonic Crystal Waveguide[J]. Laser & Optoelectronics Progress, 2013, 50(12): 120001

    Zhang Liang, Zhang Wei, Nie Qiuhua, Dai Shixun, Chen Yu. Research Progress of Two-Dimensional Photonic Crystal Waveguides[J]. Laser & Optoelectronics Progress, 2013, 50(3): 30008
    Download Citation