• Advanced Photonics
  • Vol. 5, Issue 5, 056007 (2023)
Yile Sun1、†, Hongfei Zhu2, Lu Yin3, Hanmeng Wu1, Mingxuan Cai1, Weiyun Sun4, Yueshu Xu1、5, Xinxun Yang1, Jiaxiao Han1, Wenjie Liu1, Yubing Han1、6, Xiang Hao1, Renjie Zhou2, Cuifang Kuang1、5、7、*, and Xu Liu1、5、7
Author Affiliations
  • 1Zhejiang University, College of Optical Science and Engineering, State Key Laboratory of Extreme Photonics and Instrumentation, Hangzhou, China
  • 2The Chinese University of Hong Kong, Department of Biomedical Engineering, Hong Kong, China
  • 3China Jiliang University, College of Optical and Electronic Technology, Hangzhou, China
  • 4Zhejiang University of Technology, Institute of Pharmacology, College of Pharmaceutical Sciences, Hangzhou, China
  • 5ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
  • 6Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Wuhan, China
  • 7Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, China
  • show less
    DOI: 10.1117/1.AP.5.5.056007 Cite this Article Set citation alerts
    Yile Sun, Hongfei Zhu, Lu Yin, Hanmeng Wu, Mingxuan Cai, Weiyun Sun, Yueshu Xu, Xinxun Yang, Jiaxiao Han, Wenjie Liu, Yubing Han, Xiang Hao, Renjie Zhou, Cuifang Kuang, Xu Liu. Fluorescence interference structured illumination microscopy for 3D morphology imaging with high axial resolution[J]. Advanced Photonics, 2023, 5(5): 056007 Copy Citation Text show less
    References

    [1] E. Betzig et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

    [2] M. G. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2000).

    [3] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [4] W. Wang et al. Dual-modulation difference stimulated emission depletion microscopy to suppress the background signal. Adv. Photonics, 4, 046001(2022).

    [5] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793-796(2006).

    [6] S. T. Hess, T. Girirajan, M. Mason. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J., 91, 4258-4272(2006).

    [7] B. Harke et al. Three-dimensional nanoscopy of colloidal crystals. Nano Lett., 8, 1309-1313(2008).

    [8] K. Y. Han et al. Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light. Nano Lett., 9, 3323-3329(2009).

    [9] M. D. Lew et al. Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects. Opt. Lett., 36, 202-204(2011).

    [10] S. R. P. Pavani et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl. Acad. Sci. U. S. A., 106, 2995-2999(2009).

    [11] M. Heilemann et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed., 47, 6172-6176(2008).

    [12] Y. Shechtman et al. Optimal point spread function design for 3D imaging. Phys. Rev. Lett., 113, 133902(2014).

    [13] G. Grover et al. Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE). Opt. Express, 20, 26681-26695(2012).

    [14] F. Xu et al. Three-dimensional nanoscopy of whole cells and tissues with in situ point spread function retrieval. Nat. Methods, 17, 531-540(2020).

    [15] Y. Sun et al. Parallax: high accuracy three-dimensional single molecule tracking using split images. Nano Lett., 9, 2676-2682(2009).

    [16] M. F. Juette et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat. Methods, 5, 527-529(2008).

    [17] M. Lelek et al. Single-molecule localization microscopy. Nat. Rev. Methods Primers, 1, 39(2021).

    [18] J. Chung et al. Development of a new approach for low-laser-power super-resolution fluorescence imaging. Anal. Chem., 94, 618-627(2022).

    [19] V. Nechyporuk-Zloy. Principles of Light Microscopy: from Basic to Advanced(2022).

    [20] M. G. Gustafsson et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J., 94, 4957-4970(2008).

    [21] L. Shao et al. Super-resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods, 8, 1044-1046(2011).

    [22] L. Shao et al. Interferometer-based structured-illumination microscopy utilizing complementary phase relationship through constructive and destructive image detection by two cameras. J. Microsc., 246, 229-236(2012).

    [23] L. Shao et al. I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions. Biophys. J., 94, 4971-4983(2008).

    [24] M. Gustafsson, D. A. Agard, J. W. Sedat. Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses. Proc. SPIE, 2412, 147-156(1995).

    [25] S. Hell, E. H. K. Stelzer. Properties of a 4Pi confocal fluorescence microscope. J. Opt. Soc. Am. A, 9, 2159-2166(1992).

    [26] M. Bates et al. Optimal precision and accuracy in 4Pi-storm using dynamic spline PSF models. Nat. Methods, 19, 603-612(2022).

    [27] Y. Zhang et al. Nanoscale subcellular architecture revealed by multicolor three-dimensional salvaged fluorescence imaging. Nat. Methods, 17, 225-231(2020).

    [28] S. Liu, F. Huang. Enhanced 4Pi single-molecule localization microscopy with coherent pupil based localization. Commun. Biol., 3, 220(2020).

    [29] G. Shtengel et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl. Acad. Sci. U. S. A., 106, 3125-3130(2009).

    [30] D. Aquino et al. Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores. Nat. Methods, 8, 353-359(2011).

    [31] F. Huang et al. Ultra-high resolution 3D imaging of whole cells. Cell, 166, 1028-1040(2016).

    [32] A. Bilenca et al. Fluorescence interferometry: principles and applications in biology. Ann. N.Y. Acad. Sci., 1130, 68-77(2008).

    [33] J. Wang et al. Implementation of a 4Pi-SMS super-resolution microscope. Nat. Protoc., 16, 677-727(2020).

    [34] G. Wen et al. High-fidelity structured illumination microscopy by point-spread-function engineering. Light Sci. Appl., 10, 70(2021).

    [35] V. M. Claas et al. Isotropic 3D nanoscopy based on single emitter switching. Opt. Express, 16, 20774-20788(2008).

    [36] E. Wolf. Electromagnetic diffraction in optical systems-I. An integral representation of the image field. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 253, 349-357(1959).

    [37] M. C. Lang et al. 4Pi microscopy with negligible sidelobes. New J. Phys., 10, 043041(2008).

    [38] L. Ma et al. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res., 25, 24-38(2015).

    [39] C. Zheng et al. Three-dimensional super-resolved live cell imaging through polarized multi-angle TIRF. Opt. Lett., 43, 1423-1426(2018).

    [40] Y. Chen et al. Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy. Nat. Commun., 9, 4818(2018).

    [41] L. Dong et al. Advanced imaging. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science, 349, aab3500(2018).

    [42] R. Schmidt et al. Spherical nanosized focal spot unravels the interior of cells. Nat. Methods, 5, 539-544(2008).

    [43] X. Hao et al. Three-dimensional adaptive optical nanoscopy for thick specimen imaging at sub-50-nm resolution. Nat. Methods, 18, 688-693(2021).

    [44] Y. Sun et al. Modulated illumination localization microscopy-enabled sub-10 nm resolution. J. Innov. Opt. Health Sci., 15, 2230004(2022).

    [45] L. Gu et al. Molecular-scale axial localization by repetitive optical selective exposure. Nat. Methods, 18, 369-373(2021).

    [46] P. Jouchet et al. Nanometric axial localization of single fluorescent molecules with modulated excitation. Nat. Photonics, 15, 297-304(2021).

    [47] K. C. Gwosch et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods, 17, 217-224(2020).

    [48] I. Arganda-Carreras et al. Trainable Weka segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics, 33, 2424-2426(2017).

    [49] D. M. Greig, B. T. Porteous, A. H. Seheult. Exact maximum a posteriori estimation for binary images. J. R. Stat. Soc.: Ser. B (Methodol.), 51, 271-279(1989).

    [50] B. Stephen et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers(2011).

    [51] L. Chen et al. Fast, long-term super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol., 36, 451-459(2018).

    [52] M. J. Mlodzianoski et al. Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections. Nat. Methods, 15, 583-586(2018).

    [53] M. E. Siemons et al. Robust adaptive optics for localization microscopy deep in complex tissue. Nat. Commun., 12, 3407(2021).

    Yile Sun, Hongfei Zhu, Lu Yin, Hanmeng Wu, Mingxuan Cai, Weiyun Sun, Yueshu Xu, Xinxun Yang, Jiaxiao Han, Wenjie Liu, Yubing Han, Xiang Hao, Renjie Zhou, Cuifang Kuang, Xu Liu. Fluorescence interference structured illumination microscopy for 3D morphology imaging with high axial resolution[J]. Advanced Photonics, 2023, 5(5): 056007
    Download Citation