• Laser & Optoelectronics Progress
  • Vol. 58, Issue 8, 0828002 (2021)
Yongshi Peng1、2、3, Shuisen Chen3、**, Jinyue Chen3, Jing Zhao3, Chongyang Wang3, and Yunlan Guan1、2、*
Author Affiliations
  • 1Faculty of Geomatics, East China University of Technology, Nanchang, Jiangxi 330013, China
  • 2Key Laboratory of Watershed Ecology and Geographical Environment Monitoring National Administration of Surveying, Mapping and Geoinformation,Nanchang, Jiangxi 330013, China
  • 3Key Lab of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangdong Engineering Technology Center for Remote Sensing Big Data Application, Guangzhou Institute of Geography, Guangzhou, Guangdong 510070, China
  • show less
    DOI: 10.3788/LOP202158.0828002 Cite this Article Set citation alerts
    Yongshi Peng, Shuisen Chen, Jinyue Chen, Jing Zhao, Chongyang Wang, Yunlan Guan. Estimation Model of Chlorophyll-a Concentration Based on Continuous Wavelet Coefficient[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0828002 Copy Citation Text show less
    References

    [1] Wang M C, Liu X Q, Zhang J H et al. Evaluate method and classification standard on lake eutrophication[J]. Environmental Monitoring in China, 18, 47-49(2002).

    [2] Qin B Q. Approaches to mechanisms and control of eutrophication of shallow lakes in the middle and lower reaches of the Yangze River[J]. Journal of Lake Science, 14, 193-202(2002).

    [3] Yang J K, Chen C Q. An optimal algorithm for retrieval of chlorophyll, suspended sediments and gelbstoff of caseⅡ waters in Zhujiang River estuary[J]. Journal of Tropical Oceanography, 26, 15-20(2007).

    [4] Göritz A, Berger S, Gege P et al. Retrieval of water constituents from hyperspectral in situ measurements under variable cloud cover: a case study at lake stechlin (Germany)[J]. Remote Sensing, 10, 181(2018).

    [5] Beck R, Zhan S G, Liu H X et al. Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations[J]. Remote Sensing of Environment, 178, 15-30(2016).

    [6] Keller S, Maier P, Riese F et al. Hyperspectral data and machine learning for estimating CDOM, chlorophyll a, diatoms, green algae and turbidity[J]. International Journal of Environmental Research and Public Health, 15, 1881(2018).

    [7] Zhang Q F, Wu Z F, Xie X T et al. Research progress of the inversion algorithm of chlorophyll-a concentration in estuaries and coastal waters[J]. Ecological Science, 36, 215-222(2017).

    [8] Gao Y R, Liu M L, Wu Z X et al. Chlorophyll-a concentration estimation with field spectra of summer water-body in Lake Qiandao[J]. Journal of Lake Sciences, 24, 553-561(2012).

    [9] O'Reilly J E, Maritorena S, Mitchell B G et al. Ocean color chlorophyll algorithms for SeaWiFS[J]. Journal of Geophysical Research: Oceans, 103, 24937-24953(1998).

    [10] Xie T T, Chen Y Z, Lu W F et al. Retrieval of chlorophyll-a in lower reaches of the Minjiang River via three-band bio-optical model[J]. Laser & Optoelectronics Progress, 57, 071701(2020).

    [11] Labat D. Recent advances in wavelet analyses:part 1. A review of concepts[J]. Journal of Hydrology, 314, 275-288(2005).

    [12] Ye H Y, Xiong H G, Zhang F et al. CWT-based estimation of soil organic matter content in arid area under different human disturbance degrees[J]. Laser & Optoelectronics Progress, 56, 051101(2019).

    [13] Gu X H, Wang Y C, Sun Q et al. Hyperspectral inversion of soil organic matter content in cultivated land based on wavelet transform[J]. Computers and Electronics in Agriculture, 167, 105053(2019).

    [14] Yao X, Si H Y, Cheng T et al. Hyperspectral estimation of canopy leaf biomass phenotype per ground area using a continuous wavelet analysis in wheat[J]. Frontiers in Plant Science, 9, 1360(2018).

    [15] Rivard B, Feng J, Gallie A et al. Continuous wavelets for the improved use of spectral libraries and hyperspectral data[J]. Remote Sensing of Environment, 112, 2850-2862(2008).

    [16] Ampe E M, Hestir E L, Bresciani M et al. A wavelet approach for estimating chlorophyll-a from inland waters with reflectance spectroscopy[J]. IEEE Geoscience and Remote Sensing Letters, 11, 89-93(2014).

    [17] Zhu Y Q. Trophic status and phytoplankton assemblages of typical reservoirs in Guangdong Province in a dry season[D]. Guangzhou: Jinan University, 3-4(2018).

    [18] Tang J W, Tian G L, Wang X Y et al. The methods of water spectra measurement and analysis Ⅰ: above-water method[J]. Journal of Remote Sensing, 8, 37-44(2004).

    [19] Chen Y W, Gao X Y. Comparison of two methods for phytoplankton chlorophyll-a concentration measurement[J]. Journal of Lake Science, 12, 185-188(2000).

    [20] Wang Z L, Chen J X, Fan Y F et al. Evaluating photosynthetic pigment contents of maize using UVE-PLS based on continuous wavelet transform[J]. Computers and Electronics in Agriculture, 169, 105160(2020).

    [21] He R Y, Li H, Qiao X J et al. Using wavelet analysis of hyperspectral remote-sensing data to estimate canopy chlorophyll content of winter wheat under stripe rust stress[J]. International Journal of Remote Sensing, 39, 4059-4076(2018).

    [22] Yu Z X, Zhang C, Huang T et al. Hyperspectral estimation model for chlorophyll content of Zizania Caduciflora in Jianhu wetlands[J]. Wetland Science, 16, 742-748(2018).

    [23] Fang S H, Le Y, Liang Q et al. Retrieval of chlorophyll content using continuous wavelet analysis across a range of vegetation species[J]. Geomatics and Information Science of Wuhan University, 40, 296-302(2015).

    [24] Liu H J, Li M Z, Zhang J Y et al. Estimation of chlorophyll content in maize canopy using wavelet denoising and SVR method[J]. International Journal of Agricultural and Biological Engineering, 11, 132-137(2018).

    [25] Jin X, Zhu X Z, Li S W et al. Predicting soil available phosphorus by hyperspectral regression method based on gradient boosting decision tree[J]. Laser & Optoelectronics Progress, 56, 131102(2019).

    [26] Wang Z M, Kawamura K, Sakuno Y et al. Retrieval of chlorophyll-a and total suspended solids using iterative stepwise elimination partial least squares (ISE-PLS) regression based on field hyperspectral measurements in irrigation ponds in Higashihiroshima, Japan[J]. Remote Sensing, 9, 264(2017).

    [27] Song K S, Li L, Tedesco L P et al. Remote estimation of chlorophyll-a in turbid inland waters: three-band model versus GA-PLS model[J]. Remote Sensing of Environment, 136, 342-357(2013).

    [28] An R, Liu Y Y, Qu C M et al. Estimation of chlorophyll-a concentration of caseⅡ waters from hyperspectral remote sensing data in NDCI method[J]. Journal of Lake Sciences, 25, 437-444(2013).

    Yongshi Peng, Shuisen Chen, Jinyue Chen, Jing Zhao, Chongyang Wang, Yunlan Guan. Estimation Model of Chlorophyll-a Concentration Based on Continuous Wavelet Coefficient[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0828002
    Download Citation