• Laser & Optoelectronics Progress
  • Vol. 58, Issue 1, 100007 (2021)
Li Shichun*, Mo Bin, Xiao Gang, and Sun Fujian
Author Affiliations
  • Hunan Provincial Key Laboratory of High Efficiency and Precision Machining of Difficult-to-Cut Materials, Intelligent Manufacturing Institute of Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
  • show less
    DOI: 10.3788/LOP202158.0100007 Cite this Article Set citation alerts
    Li Shichun, Mo Bin, Xiao Gang, Sun Fujian. Microstructure Characteristics and Their Influence Factors During Laser Additive Manufacturing of Metal Materials[J]. Laser & Optoelectronics Progress, 2021, 58(1): 100007 Copy Citation Text show less
    References

    [1] Hou J, Chen W, Chen Z E et al. Microstructure, tensile properties and mechanical anisotropy of selective laser melted 304L stainless steel[J]. Journal of Materials Science & Technology, 48, 63-71(2020).

    [2] Gutierrez-Urrutia I. Muñoz-Morris M A, Morris D G. Contribution of microstructural parameters to strengthening in an ultrafine-grained Al-7% Si alloy processed by severe deformation[J]. Acta Materialia, 55, 1319-1330(2007).

    [3] Fan P F, Sun W L, Zhang G et al. Microstructure, properties and applications of laser cladding Fe-based alloy gradient coatings[J]. Materials Reports, 33, 3806-3810(2019).

    [4] Li Y J. Microstructure evolution and performance control of laser additive remanufacturing ductile iron component[D]. Harbin: Harbin Institute of Technology, 147-148(2019).

    [5] Zhang H, Zhu H H, Qi T et al. Selective laser melting of high strength Al-Cu-Mg alloys: processing, microstructure and mechanical properties[J]. Materials Science and Engineering: A, 656, 47-54(2016). http://smartsearch.nstl.gov.cn/paper_detail.html?id=b8d1259470b30cfa57dfcba6ff70dd2a

    [6] Biffi C A, Fiocchi J, Bassani P et al. Continuous wave vs pulsed wave laser emission in selective laser melting of AlSi10Mg parts with industrial optimized process parameters: microstructure and mechanical behaviour[J]. Additive Manufacturing, 24, 639-646(2018). http://www.sciencedirect.com/science/article/pii/S2214860418305906

    [7] Zhang Q, Chen J, Wang L I et al. Solidification microstructure of laser additive manufactured Ti-6Al-2Zr-2Sn-3Mo-1.5Cr-2Nb titanium alloy[J]. Journal of Materials Science & Technology, 32, 381-386(2016).

    [8] Zhang J S, Wu Y, Cheng X et al. Study of microstructure evolution and preference growth direction in a fully laminated directional micro-columnar TiAl fabricated using laser additive manufacturing technique[J]. Materials Letters, 243, 62-65(2019). http://www.sciencedirect.com/science/article/pii/S0167577X19301806

    [9] Huang L, Cao Y, Li G H et al. Microstructure characteristics and mechanical behaviour of a selective laser melted Inconel 718 alloy[J]. Journal of Materials Research and Technology, 9, 2440-2454(2020).

    [10] Zhao Y, Zhao G R, Ma W Y et al. Study on process, structure, and properties of nickel selective laser melting[J]. Laser & Optoelectronics Progress, 57, 171402(2020).

    [11] Li J, Cheng X, Liu D et al. Phase evolution of a heat-treatable aluminum alloy during laser additive manufacturing[J]. Materials Letters, 214, 56-59(2018).

    [12] Ma B B. Microstructure evolution and wear resistance of laser cladded Fe-based alloys[D]. Taiyuan: Taiyuan University of Technology, 36-40(2018).

    [13] Liu F G, Lin X, Song M H et al. Microstructure and mechanical properties of laser solid formed 300M steel[J]. Journal of Alloys and Compounds, 621, 35-41(2015).

    [14] Wang P, Li H C, Prashanth K G et al. Selective laser melting of Al-Zn-Mg-Cu: heat treatment, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 707, 287-290(2017). http://www.sciencedirect.com/science/article/pii/S0925838816336908

    [15] Song H Y, Lei J B, Xie J C et al. Laser melting deposition of K403 superalloy: the influence of processing parameters on the microstructure and wear performance[J]. Journal of Alloys and Compounds, 805, 551-564(2019). http://www.sciencedirect.com/science/article/pii/S092583881932599X

    [16] Li Y L, Lei L M, Hou H P et al. Effect of heat processing on microstructures and tensile properties of selective laser melting Hastelloy X alloy[J]. Journal of Materials Engineering, 47, 100-106(2019).

    [17] Zhang P. The study on microstructure and mechanical properties of selective laser melting additive manufactured 24CrNiMo alloy steel[D]. Changchun: Jilin University, 46-47(2019).

    [18] Liu J. Wettability and control mechanism of aluminum-based material fabricated by selective laser melting[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 8-9(2019).

    [19] Liu Y C, Zhang H J, Guo Q Y et al. Microstructure evolution of inconel 718 superalloy during hot working and its recent development tendency[J]. Acta Metallurgica Sinica, 54, 1653-1664(2018).

    [20] Yang Q. Study on the powder characteristics and forming properties in selective laser melting of IN738 alloy[D]. Lanzhou: Lanzhou University of Technology, 32-34(2019).

    [21] Kang X L, Dong S Y, Wang H B et al. Effect of laser power on gradient microstructure of low-alloy steel built by laser melting deposition[J]. Materials Letters, 262, 127073(2020).

    [22] Xin B, Zhou X X, Gong Y D et al. Impact of Z-increment on microstructure and mechanical properties of laser cladding forming parts[J]. Chinese Journal of Lasers, 46, 1102014(2019).

    [23] Xie J. Study on the process of gradient microstructure in a nickel-based alloy by laser additive manufacturing[D]. Changsha: Hunan University, 16-20(2018).

    [24] Simchi A. Direct laser sintering of metal powders: mechanism, kinetics and microstructural features[J]. Materials Science and Engineering: A, 428, 148-158(2006). http://www.sciencedirect.com/science/article/pii/s0921509306005491

    [25] Wang W Q, Li Y Q, Li X et al. Microstructures and properties of Ni-Cr-B-Si alloy powders prepared by selective laser melting[J]. Materials Reports, 34, 2077-2082(2020).

    [26] Kou S. Welding metallurgy[M]. Hoboken: John Wiley & Sons, Inc., 170-187(2002).

    [27] Gu D D, Meiners W, Wissenbach K et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 57, 133-164(2012).

    [28] Buchbinder D, Schleifenbaum H, Heidrich S et al. High power selective laser melting (HP SLM) of aluminum parts[J]. Physics Procedia, 12, 271-278(2011).

    [29] Ma Y Y, Liu Y D, Shi W T et al. Effect of scanning speed on forming defects and properties of selective laser melted 316L stainless steel powder[J]. Laser & Optoelectronics Progress, 56, 101403(2019).

    [30] Montero-Sistiaga M L, Pourbabak S, van Humbeeck J et al. Microstructure and mechanical properties of Hastelloy X produced by HP-SLM (high power selective laser melting)[J]. Materials & Design, 165, 107598(2019). http://www.sciencedirect.com/science/article/pii/S0264127519300188

    [31] Parimi L L, Ravi G A, Clark D et al. Microstructural and texture development in direct laser fabricated IN718[J]. Materials Characterization, 89, 102-111(2014).

    [32] Zhang Q M, Zhong M L, Yang S et al. The relationship between the processing parameters and the qualities of the coatings formed by powder feeding laser cladding[J]. Transactions of the China Welding Institution, 22, 51-54, 2(2001).

    [33] Dong C, Zhang S Q, Li A et al. Microstructure of ultrahigh strength steel 300M fabricated by laser melting deposition[J]. Acta Metallurgica Sinica, 44, 598-602(2008).

    [34] Tang M, Pistorius P C, Narra S et al. Rapid solidification: selective laser melting of AlSi10Mg[J]. JOM, 68, 960-966(2016).

    [35] Turchi P E A, Kaufman L, Liu Z K. Modeling of Ni-Cr-Mo based alloys: part I-phase stability[J]. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 30, 70-87(2006). http://www.sciencedirect.com/science/article/pii/S0364591605000970

    [36] Xiang S, Li J F, Luan H W et al. Effects of process parameters on microstructures and tensile properties of laser melting deposited CrMnFeCoNi high entropy alloys[J]. Materials Science and Engineering: A, 743, 412-417(2019). http://www.sciencedirect.com/science/article/pii/S0921509318316423

    [37] Hou H P, Liang Y C, He Y L et al. Microstructural evolution and tensile property of hastelloy-X alloys produced by selective laser melting[J]. Chinese Journal of Lasers, 44, 0202007(2017).

    [38] Xu J L, Lin X, Wang Z T et al. Microstructure evolution of Ni-Sn eutectic alloy in laser cladding[J]. Applied Laser, 32, 1-7(2012).

    [39] Sun D S. Process and property control of selective laser melting additive manufacturing of titanium alloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 29-31(2019).

    [40] Liu J W, Song Y N, Chen C Y et al. Effect of scanning speed on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting[J]. Materials & Design, 186, 108355(2020).

    [41] Wang D, Song C H, Yang Y Q et al. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts[J]. Materials & Design, 100, 291-299(2016). http://www.sciencedirect.com/science/article/pii/S0264127516303951

    [42] Zhao Z, Chen J, Zhang Q et al. Microstructure and mechanical properties of laser additive repaired Ti17 titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 27, 2613-2621(2017).

    [43] Zhou S F, Huang Y J, Zeng X Y et al. Microstructure characteristics of Ni-based WC composite coatings by laser induction hybrid rapid cladding[J]. Materials Science and Engineering: A, 480, 564-572(2008). http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=31492013&site=ehost-live

    [44] DebRoy T, Wei H L, Zuback J S et al. Additive manufacturing of metallic components-process, structure and properties[J]. Progress in Materials Science, 92, 112-224(2018). http://www.sciencedirect.com/science/article/pii/S0079642517301172

    [45] Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification[J]. Acta Metallurgica, 34, 823-830(1986).

    [46] Liu H X, Dong T, Zhang X W et al. Microstructure and cutting performance of WC/Co50/Al cemented carbide coated tools fabricated by laser cladding process[J]. Chinese Journal of Lasers, 44, 0802002(2017).

    [47] Zhong M L, Liu W J, Yao K et al. Microstructural evolution in high power laser cladding of Stellite 6+WC layers[J]. Surface and Coatings Technology, 157, 128-137(2002).

    [48] Gremaud M, Carrard M, Kurz W. The microstructure of rapidly solidified Al-Fe alloys subjected to laser surface treatment[J]. Acta Metallurgica et Materialia, 38, 2587-2599(1990). http://www.sciencedirect.com/science/article/pii/095671519090271H

    [49] Rosenthal D. The theory of moving sources of heat and its application to metal treatments[J]. Transactions of the ASME, 68, 849-866(1946). http://ci.nii.ac.jp/naid/10004658924

    [50] Lei J B, Shi C, Zhou S F et al. Enhanced corrosion and wear resistance properties of carbon fiber reinforced Ni-based composite coating by laser cladding[J]. Surface and Coatings Technology, 334, 274-285(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=5c45bd9d6053e03fef6d0f3984cc7728

    [51] Wang T, Zhu Y Y, Zhang S Q et al. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing[J]. Journal of Alloys and Compounds, 632, 505-513(2015).

    [52] Jiang Y Y. The exploring of the simulation of solidification microstructure in electron beam welding[D]. Harbin: Harbin Institute of Technology, 6(2011).

    [53] Hou Y Y, Cheng G G. An investigation of columnar to equiaxed transition and the effect of cooling rate on nucleus density distribution of an industrial Ti and Nb-stabilized ferritic stainless steel[J]. Metallurgical and Materials Transactions A, 50, 4686-4700(2019). http://link.springer.com/article/10.1007/s11661-019-05407-6

    [54] Lin X, Li Y, Wang M et al. Columnar to equiaxed transition during alloy solidification[J]. Science in China Series E: Technological Sciences, 46, 475-489(2003).

    [55] Gäumann M, Bezençon C, Canalis P et al. Single-crystal laser deposition of superalloys: processing-microstructure maps[J]. Acta Materialia, 49, 1051-1062(2001). http://www.researchgate.net/publication/223809046_Single-crystal_laser_deposition_of_superalloys_Processing-microstructure_maps

    [56] Min N B[M]. Study on the structure,property,molecule design and manufacture process of functional material for photoelectronics, 226-239(1998).

    [57] Fu H Z, Guo J J, Li J S et al[M]. Directional solidification and processing of advanced materials, 437-490(2008).

    Li Shichun, Mo Bin, Xiao Gang, Sun Fujian. Microstructure Characteristics and Their Influence Factors During Laser Additive Manufacturing of Metal Materials[J]. Laser & Optoelectronics Progress, 2021, 58(1): 100007
    Download Citation