• High Power Laser Science and Engineering
  • Vol. 4, Issue 3, 03000e30 (2016)
E. Brambrink1、2、*, S. Baton1、2, M. Koenig1、2、3, R. Yurchak1、2, N. Bidaut1、2, B. Albertazzi1、2, J. E. Cross4, G. Gregori4, A. Rigby4, E. Falize5, A. Pelka6, F. Kroll6, S. Pikuz7, Y. Sakawa8, N. Ozaki9, C. Kuranz10, M. Manuel10, C. Li11, P. Tzeferacos12, and D. Lamb12
Author Affiliations
  • 1LULI - CNRS, Ecole Polytechnique, CEA : Universit′e Paris-Saclay
  • 2UPMC Univ Paris 06 : Sorbonne Universit′es - F-91128 Palaiseau cedex, France
  • 3Institute for Academic Initiatives, Osaka U., Suita, Osaka 565-0871, Japan
  • 4Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
  • 5CEA-DAM-DIF, F-91297 Arpajon, France
  • 6HZDR, Bautzner Landstrae 400, 01328 Dresden, Germany
  • 7JIHT-RAS, 13-2 Izhorskaya st., Moscow, 125412, Russia
  • 8Institute of Laser Engineering, Osaka U., Suita, Osaka 565-0871, Japan
  • 9Graduate School of Engineering, Osaka U., Suita, Osaka 565-0871, Japan
  • 10Department of Energy Engineering Science, Faculty of Engineering Sciences, Kyushu University, Japan
  • 11Plasma Science and Fusion Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
  • 12Flash Center for Computational Science, University of Chicago, IL 60637, USA
  • show less
    DOI: 10.1017/hpl.2016.31 Cite this Article Set citation alerts
    E. Brambrink, S. Baton, M. Koenig, R. Yurchak, N. Bidaut, B. Albertazzi, J. E. Cross, G. Gregori, A. Rigby, E. Falize, A. Pelka, F. Kroll, S. Pikuz, Y. Sakawa, N. Ozaki, C. Kuranz, M. Manuel, C. Li, P. Tzeferacos, D. Lamb. Short-pulse laser-driven x-ray radiography[J]. High Power Laser Science and Engineering, 2016, 4(3): 03000e30 Copy Citation Text show less
    Radiography setup with imaging plate, target holder and laser beams. On the right a magnification of the target holder with x-ray source and radiography sample.
    Fig. 1. Radiography setup with imaging plate, target holder and laser beams. On the right a magnification of the target holder with x-ray source and radiography sample.
    Raw data of the radiography. The projected object is a 400 lpi gold grid. In addition, there are step targets of plastic and aluminum to estimate the dynamic resolution.
    Fig. 2. Raw data of the radiography. The projected object is a 400 lpi gold grid. In addition, there are step targets of plastic and aluminum to estimate the dynamic resolution.
    V spectrum in function of the laser wavelength. The He-like lines are reduced compared to the $K_{\unicode[STIX]{x1D6FC}}$ line.
    Fig. 3. V spectrum in function of the laser wavelength. The He-like lines are reduced compared to the $K_{\unicode[STIX]{x1D6FC}}$ line.
    Signal profile through the grid region, showing the unperturbed signal, the edge of the grid and the oscillations of the grid. Note the small variations of the signal over the detector.
    Fig. 4. Signal profile through the grid region, showing the unperturbed signal, the edge of the grid and the oscillations of the grid. Note the small variations of the signal over the detector.
    X-ray radiograph at 5.1 keV (V backlighter) taken 75 ns after the main drive beam.
    Fig. 5. X-ray radiograph at 5.1 keV (V backlighter) taken 75 ns after the main drive beam.
    SignalBackgroundSignalBackground
    V 11.7 2.7 58 4
    Cu3.7 0.9 11 0.6
    Mo 9 1.5 20 2.2
    Table 1. Comparison of x-ray signals from different materials and for two laser wavelengths. The background is measured behind the edge of the gold grid.
    E. Brambrink, S. Baton, M. Koenig, R. Yurchak, N. Bidaut, B. Albertazzi, J. E. Cross, G. Gregori, A. Rigby, E. Falize, A. Pelka, F. Kroll, S. Pikuz, Y. Sakawa, N. Ozaki, C. Kuranz, M. Manuel, C. Li, P. Tzeferacos, D. Lamb. Short-pulse laser-driven x-ray radiography[J]. High Power Laser Science and Engineering, 2016, 4(3): 03000e30
    Download Citation