• Laser & Optoelectronics Progress
  • Vol. 58, Issue 15, 1516023 (2021)
Chaosu Wang1 and Xiaowei Jiang1、2、*
Author Affiliations
  • 1College of Information Engineering, Quzhou College of Technology, Quzhou , Zhejiang 324000, China
  • 2Key Laboratory of Opto-Electronics Technology Ministry of Education, Beijing University of Technology, Beijing 100124China
  • show less
    DOI: 10.3788/LOP202158.1516023 Cite this Article Set citation alerts
    Chaosu Wang, Xiaowei Jiang. Metamaterial Perfect Absorber with Adjustable Absorptive Efficiency Based on Graphene[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516023 Copy Citation Text show less
    References

    [1] Landy N I, Sajuyigbe S, Mock J J et al. A perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [2] Liao Y L, Zhao Y. Ultra-narrowband dielectric metamaterial absorber with ultra-sparse nanowire grids for sensing applications[J]. Scientific Reports, 10, 1480(2020).

    [3] Ding F, Cui Y X, Ge X C et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 100, 103506(2011).

    [4] Liu B, Tang C J, Chen J et al. Dual-band light absorption enhancement of monolayer graphene from surface plasmon polaritons and magnetic dipole resonances in metamaterials[J]. Optics Express, 25, 12061-12068(2017).

    [5] Tuan T S, Hoa N T Q. Numerical study of an efficient broadband metamaterial absorber in visible light region[J]. IEEE Photonics Journal, 11, 1-10(2019).

    [6] Sang T, Wang R, Li J L et al. Approaching total absorption of graphene strips using a c-Si subwavelength periodic membrane[J]. Optics Communications, 413, 255-260(2018).

    [7] Zhong M. Design and measurement of a narrow band metamaterial absorber in terahertz range[J]. Optical Materials, 100, 109712(2020).

    [8] Mou N L, Liu X L, Wei T et al. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material[J]. Nanoscale, 12, 5374-5379(2020).

    [9] Lei L, Lou F, Tao K Y et al. Tunable and scalable broadband metamaterial absorber involving VO2-based phase transition[J]. Photonics Research, 7, 734-741(2019).

    [10] Fan C Z, Tian Y C, Ren P W et al. Realization of THz dualband absorber with periodic cross-shaped graphene metamaterials[J]. Chinese Physics B, 28, 076105(2019).

    [11] He X J, Yao Y, Zhu Z H et al. Active graphene metamaterial absorber for terahertz absorption bandwidth, intensity and frequency control[J]. Optical Materials Express, 8, 1031-1042(2018).

    [12] Chen H, Zhang X X, Wang H et al. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons[J]. Acta Physica Sinica, 67, 118101(2018).

    [13] Zhao Z Y, Li G H, Yu F L et al. Sub-wavelength grating enhanced ultra-narrow graphene perfect absorber[J]. Plasmonics, 13, 2267-2272(2018).

    [14] Jiang X W, Wu H, Yuan S C. Enhancement of graphene three-channel optical absorption based on metal grating[J]. Acta Physica Sinica, 68, 138101(2019).

    [15] Liu Z M, Li Y, Zhang J et al. Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films[J]. Journal of Physics D: Applied Physics, 50, 385104(2017).

    [16] Rufangura P, Sabah C. Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications[J]. Journal of Alloys and Compounds, 671, 43-50(2016).

    [17] Iwaszczuk K, Strikwerda A C, Fan K B et al. Flexible metamaterial absorbers for stealth applications at terahertz frequencies[J]. Optics Express, 20, 635-643(2012).

    [18] Lu H, Cumming B P, Gu M. Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths[J]. Optics Letters, 40, 3647-3650(2015).

    [19] Zhang L, Tang L L, Wei W et al. Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure[J]. Optics Express, 24, 20002-20009(2016).

    [20] Li X B, Lu W B, Liu Z G et al. Dynamic beam-steering in wide angle range based on tunable graphene metasurface[J]. Acta Physica Sinica, 67, 184101(2018).

    [21] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 6, 4370-4379(1972).

    [22] Li W C, Zhou X, Ying Y et al. Polarization-insensitive wide-angle multiband metamaterial absorber with a double-layer modified electric ring resonator array[J]. AIP Advances, 5, 067151(2015).

    [23] Zhao B, Zhao J M, Zhang Z M. Resonance enhanced absorption in a graphene monolayer using deep metal gratings[J]. Journal of the Optical Society of America B, 32, 1176-1185(2015).

    [24] Yu W W, Lu Y, Peng F et al. Localized surface plasmon resonance based tunable dual-band absorber within 1‒10 μm[J]. Journal of Infrared and Millimeter Waves, 38, 790-797(2019).

    [25] Ren Y Z. Research on the optical absorption characteristics based on molybdenum disulfide-grating composite structure[D], 15-35(2019).

    [26] Feng R, Qiu J, Liu L H et al. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling[J]. Optics Express, 22, A1713-A1724(2014).

    [27] Huang H L, Xia H, Guo Z B et al. Design of broadband metamaterial absorbers for permittivity sensitivity and solar cell application[J]. Chinese Physics Letters, 34, 117801(2017).

    [28] Wu D, Li R, Liu Y et al. Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region[J]. Nanoscale Research Letters, 12, 427(2017).

    [29] Wang R. Guided mode resonance and extraordinary transmission in subwavelength metallic gratings[D], 20-30(2015).

    Chaosu Wang, Xiaowei Jiang. Metamaterial Perfect Absorber with Adjustable Absorptive Efficiency Based on Graphene[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516023
    Download Citation