• Journal of Innovative Optical Health Sciences
  • Vol. 10, Issue 2, 1650045 (2017)
Yessi Jusman1,2,*, Siew-Cheok Ng1, Khairunnisa Hasikin1, Rahmadi Kurnia3..., Noor Azuan Abu Osman1 and Kean Hooi Teoh4|Show fewer author(s)
Author Affiliations
  • 1Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • 2Department of Informatics Engineering, Faculty of Engineering, Universitas Abdurrab, 28291 Pekanbaru, Riau, Indonesia
  • 3Department of Electrical Engineering, Faculty of Engineering, Andalas University, Limau Manis Campus, 25163 Padang, Sumatera Barat, Indonesia
  • 4Department of Pathology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • show less
    DOI: 10.1142/s1793545816500450 Cite this Article
    Yessi Jusman, Siew-Cheok Ng, Khairunnisa Hasikin, Rahmadi Kurnia, Noor Azuan Abu Osman, Kean Hooi Teoh. A system for detection of cervical precancerous in field emission scanning electron microscope images using texture features[J]. Journal of Innovative Optical Health Sciences, 2017, 10(2): 1650045 Copy Citation Text show less
    References

    [1] Cronjé H. S., Screening for cervical cancer in the developing world, Best. Pract. Res. Cl. Ob. 19 (2005) 517–529.

    [2] Jusman Y., Ng S. C. and Abu Osman N. A., Intelligent Screening Systems for Cervical Cancer, Sci. World. J. 2014 (2014) 1–15.

    [3] Pawley J., The development of field-emission scanning electron microscopy for imaging biological surfaces, Scanning 19 (1997) 324–336.

    [4] Cazaux J., Recent developments and new strategies in scanning electron microscopy, J. Microsc. 217 (2005) 16–35.

    [5] Mitchell O. R., Myers C. R. and Boyne W., A max-min measure for image texture analysis, IEEE Trans. Comput. 100 (1977) 408–414.

    [6] Harandi N. M., Sadri S., Moghaddam N. A. and Amirfattahi R., An automated method for segmentation of epithelial cervical cells in images of ThinPrep, J. Med. Syst. 34 (2010) 1043–1058.

    [7] V. Van raad, Z. Xue, H. Lange, Lesion Margin Analysis for Automated Classification of Cervical Cancer Lesions, STI Medical Systems, Honolulu (2006).

    [8] Alush A., Greenspan H. and Goldberger J., Automated and interactive lesion detection and segmentation in uterine cervix images, IEEE Trans. Med. Imag. 29 (2010) 488–501.

    [9] Kajtár B., Méhes G., L rch T., Deák L., Kneifné M., Alpár D. and Pajor L., Automated fluorescent in situ hybridization (FISH) analysis of t(9;22)(q34;q11) in interphase nuclei, Cytometry A 69 (2006) 506–514.

    [10] Hernández B., Olague G., Hammoud R., Trujillo L. and Romero E., Visual learning of texture descriptors for facial expression recognition in thermal imagery, Comput. Vis. Imag. Underst. 106 (2007) 258–69.

    [11] Soh L. K. and Tsatsoulis C., Texture analysis of sar sea ice imagery using gray level co-occurrence matrices, IEEE Trans. Geosci. Remote Sens. 37 (1999) 780–795.

    [12] Galloway M. M., Texture analysis using gray level run lengths, Comput. Graph. Imag. Process. 4 (1975) 172–179.

    [13] Weszka J. S., Dyer C. R. and Rosenfeld A., A comparative study of texture measures for terrain classification, IEEE Trans. Syst. Man Cybern. 4 (1976) 269–285.

    [14] Lendaris G. G. and Stanley G. L., Diffraction-pattern sampling for automatic pattern recognition, Proc. IEEE 58 (1970) 198–216.

    [15] Unser M., Sum and difference histograms for texture classification, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8 (1986) 118–125.

    [16] Wang L. and He D. C., A new statistical approach for texture analysis, Photogramm. Eng. Remote Sens. 56 (1990) 61–66.

    [17] Lark R., Geostatistical description of texture on an aerial photograph for discriminating classes of land cover, Int. J. Remote Sens. 17 (1996) 2115–233.

    [18] Conners R. W. and Harlow C. A., A theoretical comparison of texture algorithms, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-2 (1980) 204–222.

    [19] Gong P., Marceau D. J. and Howarth P. J., A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data, Remote Sens. Environ. 40 (1992) 137–151.

    [20] Kobatake H., Murakami M., Takeo H. and Nawano S., Computerized detection of malignant tumors on digital mammograms, IEEE Trans. Med. Imag. 18 (1999) 369–378.

    [21] Busch A., Boles W. W. and Sridharan S., Texture for script identification, IEEE Trans. Pattern Anal. Mach. Intell. 27 (2005) 1720–1732.

    [22] Oliver A., Freixenet J., Martí J., Pérez E., Pont J., Denton E. R. E. and Zwiggelaar R., A review of automatic mass detection and segmentation in mammographic images, Med. Image Anal. 14 (2010) 87–110.

    [23] Chen D., Sengupta S. and Welch R., Cloud field classification based upon high spatial resolution textural features: 2. Simplified vector approaches, J. Geophys. Res. Atmos. (1984–2012) 94 (1989) 14749–14765.

    [24] Gonzalez R. C., Woods R. E. and Eddins S. L., Digital Image Processing Using MATLAB (Pearson Prentice Hall, Upper Saddle River, NJ, 2004).

    [25] Wang X., Zheng B., Li S., Zhang R., Mulvihill J. J., Chen W. R. and Liu H., Automated detection and analysis of fluorescent in situ hybridization spots depicted in digital microscopic images of Pap-smear specimens, J. Biomed. Opt. 14 (2009).

    [26] Park S. Y., Sargent D., Lieberman R. and Gustafsson U., Domain-specific image analysis for cervical neoplasia detection based on conditional random fields, IEEE Trans. Med. Imag. 30 (2011) 867–878.

    Yessi Jusman, Siew-Cheok Ng, Khairunnisa Hasikin, Rahmadi Kurnia, Noor Azuan Abu Osman, Kean Hooi Teoh. A system for detection of cervical precancerous in field emission scanning electron microscope images using texture features[J]. Journal of Innovative Optical Health Sciences, 2017, 10(2): 1650045
    Download Citation