• Laser & Optoelectronics Progress
  • Vol. 54, Issue 1, 10603 (2017)
Zhang Ailing*, Tian Hongmiao, Li Qingqing, and Wang Zhao
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.010603 Cite this Article Set citation alerts
    Zhang Ailing, Tian Hongmiao, Li Qingqing, Wang Zhao. Characteristics of High-Order Bragg Waveguide Grating Based on Phase-Mask Method[J]. Laser & Optoelectronics Progress, 2017, 54(1): 10603 Copy Citation Text show less
    References

    [1] Jin S L, Xu L T, Li Y F. Spatially modulated gain erbium-doped Ti∶LiNbO3 waveguide laser[J]. IEEE Photonics Technology Letters, 2014, 26(15): 1515-1517.

    [2] Arizmendi L. Photonic applications of lithium niobate crystals[J]. Physica Status Solidi, 2004, 201(2): 253-283.

    [3] Korkishko N Y, Fedorov A V, Feoktistova O Y. LiNbO3 optical waveguide fabrication by high-temperature proton exchange[J]. Journal of Lightwave Technology Photonics, 2000, 18(4): 562-568.

    [4] Busacca A C, Sones C L, Eason R W, et al. First-order quasi-phase-matched blue light generation in surface-poled Ti∶indiffused lithium niobate waveguides[J]. Applied Physics Letters, 2004, 84(22): 4430-4432.

    [5] Zhang Ming, Ren Jianwen, Chen Wen, et al. Design and analysis of photorefractive long-period waveguide grating coupler[J]. Acta Optica Sinica, 2015, 35(3): 0313002.

    [6] Zhang Ailing, He Peidong, Pan Honggang, et al. Design of electrically controlled double wavelength orthogonal polarization tunable filter[J]. Laser & Optoelectronics Progress, 2015, 52(7): 072301.

    [7] Zhang Ailing, Sun Qinfang, Yan Guangtuo. Characteristics of the double-side modulation waveguide Bragg grating[J]. Laser & Optoelectronics Progress, 2016, 53(6): 060603.

    [8] Kip D, Hukriede J, Runde D. Holographic reflection filters in photorefractive LiNbO3 channel waveguides[C]. Lumrs International Conference on Electronic Materials, 2002, 39(1): 191-234.

    [9] Benkelfat B E, Ferrière R, Wacogne B, et al. Technological implementation of Bragg grating reflectors in Ti∶LiNbO3 waveguides by proton exchange[J]. IEEE Photonics Technology Letters, 2002, 14(10): 1430-1432.

    [10] Grobnic D, Mihailov S J, Smelser C W, et al. Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask[J]. IEEE Photonics Technology Letters, 2005, 17(7): 1453-1455.

    [11] Fu Kexiang, Wang Zhiheng, Wen Jun, et al. Diffractive grade of phase gratings[J]. Acta Optica Sinica, 1998, 18(7): 870-876.

    [12] Zhang Guoping, Ye Jiaxiong, Li Zaiguang. The coupled-wave analysis of binary optical elements[J]. Opto-Electronic Engineering, 1997, 24(2): 18-22.

    [13] Liu Quan, Wu Jianhong. Analysis and comparison of the scalar diffraction theory and coupled-wave theory about grating[J]. Laser Journal, 2004, 25(2): 31-34.

    [14] Xie W X, Douay M, Bernage P, et al. Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres[J]. Optics Communications, 1993, 101(1-2): 85-91.

    [15] Hongzhi J, Yulin L. First- and second-order diffraction characteristics of fiber Bragg gratings[J]. Optics Communications, 2000, 178(4): 339-343.

    [16] Chen F S, Denton R T, Nassau K, et al. Optical memory planes using LiNbO3 and LiTaO3[J]. Proceedings of the IEEE, 1968, 56(4): 782-783.

    [17] Liu Simin, Guo Ru, Xu Jingjun. Photorefractive effect nonlinear optics and application[M]. Beijing: Science Press, 2004: 35.

    [18] Erdogan T. Fiber grating spectra[J]. Journal of Lightwave Technology, 1997, 15(8): 1277-1294.

    Zhang Ailing, Tian Hongmiao, Li Qingqing, Wang Zhao. Characteristics of High-Order Bragg Waveguide Grating Based on Phase-Mask Method[J]. Laser & Optoelectronics Progress, 2017, 54(1): 10603
    Download Citation