• Photonics Research
  • Vol. 6, Issue 3, 168 (2018)
Amir Ghobadi1、2, Hodjat Hajian1, Alireza Rahimi Rashed1, Bayram Butun1, and Ekmel Ozbay1、2、3、4、*
Author Affiliations
  • 1NANOTAM-Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
  • 2Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara, Turkey
  • 3Department of Physics, Bilkent University, 06800 Ankara, Turkey
  • 4UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
  • show less
    DOI: 10.1364/PRJ.6.000168 Cite this Article Set citation alerts
    Amir Ghobadi, Hodjat Hajian, Alireza Rahimi Rashed, Bayram Butun, Ekmel Ozbay. Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth[J]. Photonics Research, 2018, 6(3): 168 Copy Citation Text show less
    References

    [1] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla. Perfect metamaterial absorber. Phys. Rev. Lett., 100, 207402(2008).

    [2] M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv. Mater., 23, 5410-5414(2011).

    [3] N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett., 10, 2342-2348(2010).

    [4] Z. Yong, S. Zhang, C. Gong, S. He. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications. Sci. Rep., 6, 24063(2016).

    [5] D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, H. Ye. Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region. Nanoscale Res. Lett., 12, 427(2017).

    [6] D. Wu, Y. Liu, R. Li, L. Chen, R. Ma, C. Liu, H. Ye. Infrared perfect ultra-narrow band absorber as plasmonic sensor. Nanoscale Res. Lett., 11, 483(2016).

    [7] X. Lu, L. Zhang, T. Zhang. Nanoslit-microcavity-based narrow band absorber for sensing applications. Opt. Express, 23, 20715-20720(2015).

    [8] W. Chang, J. Won, L. S. Slaughter, S. Link. Plasmonic nanorod absorbers as orientation sensors. Proc. Natl. Acad. Sci. USA, 107, 2781-2786(2010).

    [9] X. Lu, R. Wan, T. Zhang. Metal-dielectric-metal based narrow band absorber for sensing applications. Opt. Express, 23, 29842-29847(2015).

    [10] V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, I. Celanovic. Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics. Adv. Energy Mater., 4, 1400334(2014).

    [11] H. Wang, Q. Chen, L. Wen, S. Song, X. Hu, G. Xu. Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application. Photon. Res., 3, 329-334(2015).

    [12] H. Wang, L. Wang. Perfect selective metamaterial solar absorbers. Opt. Express, 21, A1078-A1093(2013).

    [13] E. Rephaeli, S. Fan. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley–Queisser limit. Opt. Express, 17, 15145-15159(2009).

    [14] C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, G. Shvets. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. J. Opt., 14, 024005(2012).

    [15] M. Farhat, T.-C. Cheng, K. Q. Le, M. M.-C. Cheng, H. Bağcı, P.-Y. Chen. Mirror-backed dark alumina: a nearly perfect absorber for thermoelectronics and thermophotovotaics. Sci. Rep., 6, 19984(2016).

    [16] L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, J. Zhu. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv., 2, e1501227(2016).

    [17] K. Bae, G. Kang, S. K. Cho, W. Park, W. J. Padilla, K. Kim. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun., 6, 10103(2015).

    [18] W. Li, J. Valentine. Metamaterial perfect absorber based hot electron photodetection. Nano Lett., 14, 3510-3514(2014).

    [19] A. Ghobadi, S. A. Dereshgi, H. Hajian, G. Birant, B. Butun, A. Bek, E. Ozbay. 97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold. Nanoscale, 9, 16652-16660(2017).

    [20] T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, S. I. Bozhevolnyi. Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves. Nat. Commun., 3, 969(2012).

    [21] D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, Q. Gan. Broadband absorption engineering of hyperbolic metafilm patterns. Sci. Rep., 4, 4498(2015).

    [22] Y. Cui, K. H. Fung, J. Xu, Y. Jin, S. He, N. X. Fang. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett., 12, 1443-1447(2012).

    [23] M. Lobet, M. Lard, M. Sarrazin, O. Deparis, L. Henrard. Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption. Opt. Express, 22, 12678-12690(2014).

    [24] Y. Lin, Y. Cui, F. Ding, K. H. Fung, T. Ji, D. Li, Y. Hao. Tungsten based anisotropic metamaterial as an ultra-broadband absorber. Opt. Mater. Express, 7, 606-617(2017).

    [25] Y. Avitzour, Y. A. Urzhumov, G. Shvets. Wide-angle infrared absorber based on a negative-index plasmonic metamaterial. Phys. Rev. B, 79, 045131(2009).

    [26] H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt. A dual band terahertz metamaterial absorber. J. Phys. D, 43, 225102(2010).

    [27] Q. Wen, Y. Xie, H. Zhang, Q. Yang, Y. Li. Transmission line model and fields analysis of metamaterial absorber in the terahertz band. Opt. Express, 17, 20256-20265(2009).

    [28] J. Yang, C. Sauvan, A. Jouanin, S. Collin, J.-L. Pelouard, P. Lalanne. Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor. Opt. Express, 20, 16880-16891(2012).

    [29] L. Lin, Y. Zheng. Optimizing plasmonic nanoantennas via coordinated multiple coupling. Sci. Rep., 5, 14788(2015).

    [30] S. W. Luo, J. Zhao, D. L. Zuo, X. B. Wang. Perfect narrow band absorber for sensing applications. Opt. Express, 24, 9288-9294(2016).

    [31] Y. Chen, J. Dai, M. Yan, M. Qiu. Metal-insulator-metal plasmonic absorbers: influence of lattice. Opt. Express, 22, 30807-30814(2014).

    [32] W. Wang, D. Zhao, Y. Chen, H. Gong, X. Chen, S. Dai, Y. Yang, Q. Li, M. Qiu. Grating-assisted enhanced optical transmission through a seamless gold film. Opt. Express, 22, 5416-5421(2014).

    [33] J. O. H. Endrickson, J. U. G. Uo. Localized and nonlocalized plasmon resonance enhanced light absorption in metal-insulator-metal nanostructures. J. Opt. Soc. Am. B, 32, 1686-1692(2015).

    [34] K. Q. Le, J. Bai. Enhanced absorption efficiency of ultrathin metamaterial solar absorbers by plasmonic Fano resonance. J. Opt. Soc. Am. B, 32, 595-599(2015).

    [35] C. Koechlin, P. Bouchon, F. Pardo, J. Pelouard, R. Ha. Analytical description of subwavelength plasmonic MIM resonators and of their combination Abstract. Opt. Express, 21, 7025-7032(2013).

    [36] X. Chen, Y. Shi, F. Lou, Y. Chen, M. Yan, L. Wosinski, M. Qiu. Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber. Opt. Express, 22, 25233-25241(2014).

    [37] M. Yan. Metal-insulator-metal light absorber: a continuous structure. J. Opt., 15, 025006(2013).

    [38] J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu. High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett., 96, 251104(2010).

    [39] K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun., 2, 517(2011).

    [40] D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, H. Ye. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region. Opt. Lett., 42, 450-453(2017).

    [41] F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, S. I. Bozhevolnyi. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals. Sci. Rep., 6, 39445(2016).

    [42] M. G. Nielsen, A. Pors, O. Albrektsen, S. I. Bozhevolnyi. Efficient absorption of visible radiation by gap plasmon resonators. Opt. Express, 20, 13311-13319(2012).

    [43] Y. Lu, W. Dong, Z. Chen, A. Pors, Z. Wang, S. I. Bozhevolnyi. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation. Sci. Rep., 6, 30650(2016).

    [44] W. Guo, Y. Liu, T. Han. Ultra-broadband infrared metasurface absorber. Opt. Express, 24, 20586-20592(2016).

    [45] G. Tagliabue, H. Eghlidi, D. Poulikakos. Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin films. Nanoscale, 5, 9957-9962(2013).

    [46] D. Hu, H. Wang. Design of an ultra-broadband and polarization-insensitive solar absorber using a circular-shaped ring resonator. J. Nanophoton., 10, 026021(2016).

    [47] A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, E. Ozbay. Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity. Opt. Express, 25, 27624-27634(2017).

    [48] M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo. Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt. Express, 19, 17413-17420(2011).

    [49] Q. Feng, M. Pu, C. Hu, X. Luo. Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt. Lett., 37, 2133-2135(2012).

    [50] M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, X. Luo. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express, 20, 2246-2254(2012).

    [51] M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, X. Luo. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Sci. Rep., 5, 9822(2015).

    [52] N. Mattiucci, M. J. Bloemer, N. Aközbek, G. D’Aguanno. Impedance matched thin metamaterials make metals absorbing. Sci. Rep., 3, 3203(2013).

    [53] M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, K. Pedersen. Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications. Opt. Mater. Express, 6, 2704-2714(2016).

    [54] Y. K. Zhong, Y.-C. Lai, M.-H. Tu, B.-R. Chen, S. M. Fu, P. Yu, A. Lin. Omnidirectional, polarization-independent, ultra-broadband metamaterial perfect absorber using field-penetration and reflected-wave-cancellation. Opt. Express, 24, A832-A845(2016).

    [55] H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski. Broadband perfect absorber based on one ultrathin layer of refractory metal. Opt. Lett., 40, 2592-2595(2015).

    [56] A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, E. Ozbay. Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth. Sci. Rep., 7, 15079(2017).

    [57] S. A. Dereshgi, A. Ghobadi, H. Hajian, B. Butun, E. Ozbay. Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayer stacks. Sci. Rep., 7, 14872(2017).

    [58] A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, E. Ozbay. Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture. Sci. Rep., 7, 4755(2017).

    [59] A. Ghobadi, S. A. Dereshgi, B. Butun, E. Ozbay. Ultra-broadband asymmetric light transmission and absorption through the use of metal free multilayer capped dielectric microsphere resonator. Sci. Rep., 7, 14538(2017).

    [60] Z. Li, E. Palacios, S. Butun, H. Kocer, K. Aydin. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings. Sci. Rep., 5, 15137(2015).

    [61] Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, L.-Y. Chen. The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition. Nanoscale Res. Lett., 10, 46(2015).

    [62] Lumerical Solutions.

    [63] K. W. Yu, Y. C. Chu, E. M. Y. Chan. Effective-medium theory for two-component nonlinear composites. Phys. Rev. B, 50, 7984-7987(1994).

    [64] D. R. Smith, D. C. Vier, T. Koschny, C. M. Soukoulis. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E, 71, 036617(2005).

    CLP Journals

    [1] Dipa Ghindani, Alireza R. Rashed, Humeyra Caglayan. Unveiling spontaneous emission enhancement mechanisms in metal–insulator–metal nanocavities[J]. Photonics Research, 2021, 9(2): 237

    Amir Ghobadi, Hodjat Hajian, Alireza Rahimi Rashed, Bayram Butun, Ekmel Ozbay. Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth[J]. Photonics Research, 2018, 6(3): 168
    Download Citation