• Photonics Research
  • Vol. 6, Issue 3, 168 (2018)
Amir Ghobadi1,2, Hodjat Hajian1, Alireza Rahimi Rashed1, Bayram Butun1, and Ekmel Ozbay1,2,3,4,*
Author Affiliations
  • 1NANOTAM-Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
  • 2Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara, Turkey
  • 3Department of Physics, Bilkent University, 06800 Ankara, Turkey
  • 4UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
  • show less
    DOI: 10.1364/PRJ.6.000168 Cite this Article Set citation alerts
    Amir Ghobadi, Hodjat Hajian, Alireza Rahimi Rashed, Bayram Butun, Ekmel Ozbay, "Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth," Photonics Res. 6, 168 (2018) Copy Citation Text show less
    References

    [1] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla. Perfect metamaterial absorber. Phys. Rev. Lett., 100, 207402(2008).

    [2] M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv. Mater., 23, 5410-5414(2011).

    [3] N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett., 10, 2342-2348(2010).

    [4] Z. Yong, S. Zhang, C. Gong, S. He. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications. Sci. Rep., 6, 24063(2016).

    [5] D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, H. Ye. Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region. Nanoscale Res. Lett., 12, 427(2017).

    [6] D. Wu, Y. Liu, R. Li, L. Chen, R. Ma, C. Liu, H. Ye. Infrared perfect ultra-narrow band absorber as plasmonic sensor. Nanoscale Res. Lett., 11, 483(2016).

    [7] X. Lu, L. Zhang, T. Zhang. Nanoslit-microcavity-based narrow band absorber for sensing applications. Opt. Express, 23, 20715-20720(2015).

    [8] W. Chang, J. Won, L. S. Slaughter, S. Link. Plasmonic nanorod absorbers as orientation sensors. Proc. Natl. Acad. Sci. USA, 107, 2781-2786(2010).

    [9] X. Lu, R. Wan, T. Zhang. Metal-dielectric-metal based narrow band absorber for sensing applications. Opt. Express, 23, 29842-29847(2015).

    [10] V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, I. Celanovic. Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics. Adv. Energy Mater., 4, 1400334(2014).

    [11] H. Wang, Q. Chen, L. Wen, S. Song, X. Hu, G. Xu. Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application. Photon. Res., 3, 329-334(2015).

    [12] H. Wang, L. Wang. Perfect selective metamaterial solar absorbers. Opt. Express, 21, A1078-A1093(2013).

    [13] E. Rephaeli, S. Fan. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley–Queisser limit. Opt. Express, 17, 15145-15159(2009).

    [14] C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, G. Shvets. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. J. Opt., 14, 024005(2012).

    [15] M. Farhat, T.-C. Cheng, K. Q. Le, M. M.-C. Cheng, H. Bağcı, P.-Y. Chen. Mirror-backed dark alumina: a nearly perfect absorber for thermoelectronics and thermophotovotaics. Sci. Rep., 6, 19984(2016).

    [16] L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, J. Zhu. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv., 2, e1501227(2016).

    [17] K. Bae, G. Kang, S. K. Cho, W. Park, W. J. Padilla, K. Kim. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun., 6, 10103(2015).

    [18] W. Li, J. Valentine. Metamaterial perfect absorber based hot electron photodetection. Nano Lett., 14, 3510-3514(2014).

    [19] A. Ghobadi, S. A. Dereshgi, H. Hajian, G. Birant, B. Butun, A. Bek, E. Ozbay. 97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold. Nanoscale, 9, 16652-16660(2017).

    [20] T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, S. I. Bozhevolnyi. Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves. Nat. Commun., 3, 969(2012).

    [21] D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, Q. Gan. Broadband absorption engineering of hyperbolic metafilm patterns. Sci. Rep., 4, 4498(2015).

    [22] Y. Cui, K. H. Fung, J. Xu, Y. Jin, S. He, N. X. Fang. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett., 12, 1443-1447(2012).

    [23] M. Lobet, M. Lard, M. Sarrazin, O. Deparis, L. Henrard. Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption. Opt. Express, 22, 12678-12690(2014).

    [24] Y. Lin, Y. Cui, F. Ding, K. H. Fung, T. Ji, D. Li, Y. Hao. Tungsten based anisotropic metamaterial as an ultra-broadband absorber. Opt. Mater. Express, 7, 606-617(2017).

    [25] Y. Avitzour, Y. A. Urzhumov, G. Shvets. Wide-angle infrared absorber based on a negative-index plasmonic metamaterial. Phys. Rev. B, 79, 045131(2009).

    [26] H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt. A dual band terahertz metamaterial absorber. J. Phys. D, 43, 225102(2010).

    [27] Q. Wen, Y. Xie, H. Zhang, Q. Yang, Y. Li. Transmission line model and fields analysis of metamaterial absorber in the terahertz band. Opt. Express, 17, 20256-20265(2009).

    [28] J. Yang, C. Sauvan, A. Jouanin, S. Collin, J.-L. Pelouard, P. Lalanne. Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor. Opt. Express, 20, 16880-16891(2012).

    [29] L. Lin, Y. Zheng. Optimizing plasmonic nanoantennas via coordinated multiple coupling. Sci. Rep., 5, 14788(2015).

    [30] S. W. Luo, J. Zhao, D. L. Zuo, X. B. Wang. Perfect narrow band absorber for sensing applications. Opt. Express, 24, 9288-9294(2016).

    [31] Y. Chen, J. Dai, M. Yan, M. Qiu. Metal-insulator-metal plasmonic absorbers: influence of lattice. Opt. Express, 22, 30807-30814(2014).

    [32] W. Wang, D. Zhao, Y. Chen, H. Gong, X. Chen, S. Dai, Y. Yang, Q. Li, M. Qiu. Grating-assisted enhanced optical transmission through a seamless gold film. Opt. Express, 22, 5416-5421(2014).

    [33] J. O. H. Endrickson, J. U. G. Uo. Localized and nonlocalized plasmon resonance enhanced light absorption in metal-insulator-metal nanostructures. J. Opt. Soc. Am. B, 32, 1686-1692(2015).

    [34] K. Q. Le, J. Bai. Enhanced absorption efficiency of ultrathin metamaterial solar absorbers by plasmonic Fano resonance. J. Opt. Soc. Am. B, 32, 595-599(2015).

    [35] C. Koechlin, P. Bouchon, F. Pardo, J. Pelouard, R. Ha. Analytical description of subwavelength plasmonic MIM resonators and of their combination Abstract. Opt. Express, 21, 7025-7032(2013).

    [36] X. Chen, Y. Shi, F. Lou, Y. Chen, M. Yan, L. Wosinski, M. Qiu. Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber. Opt. Express, 22, 25233-25241(2014).

    [37] M. Yan. Metal-insulator-metal light absorber: a continuous structure. J. Opt., 15, 025006(2013).

    [38] J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu. High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett., 96, 251104(2010).

    [39] K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun., 2, 517(2011).

    [40] D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, H. Ye. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region. Opt. Lett., 42, 450-453(2017).

    [41] F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, S. I. Bozhevolnyi. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals. Sci. Rep., 6, 39445(2016).

    [42] M. G. Nielsen, A. Pors, O. Albrektsen, S. I. Bozhevolnyi. Efficient absorption of visible radiation by gap plasmon resonators. Opt. Express, 20, 13311-13319(2012).

    [43] Y. Lu, W. Dong, Z. Chen, A. Pors, Z. Wang, S. I. Bozhevolnyi. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation. Sci. Rep., 6, 30650(2016).

    [44] W. Guo, Y. Liu, T. Han. Ultra-broadband infrared metasurface absorber. Opt. Express, 24, 20586-20592(2016).

    [45] G. Tagliabue, H. Eghlidi, D. Poulikakos. Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin films. Nanoscale, 5, 9957-9962(2013).

    [46] D. Hu, H. Wang. Design of an ultra-broadband and polarization-insensitive solar absorber using a circular-shaped ring resonator. J. Nanophoton., 10, 026021(2016).

    [47] A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, E. Ozbay. Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity. Opt. Express, 25, 27624-27634(2017).

    [48] M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo. Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt. Express, 19, 17413-17420(2011).

    [49] Q. Feng, M. Pu, C. Hu, X. Luo. Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt. Lett., 37, 2133-2135(2012).

    [50] M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, X. Luo. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express, 20, 2246-2254(2012).

    [51] M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, X. Luo. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Sci. Rep., 5, 9822(2015).

    [52] N. Mattiucci, M. J. Bloemer, N. Aközbek, G. D’Aguanno. Impedance matched thin metamaterials make metals absorbing. Sci. Rep., 3, 3203(2013).

    [53] M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, K. Pedersen. Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications. Opt. Mater. Express, 6, 2704-2714(2016).

    [54] Y. K. Zhong, Y.-C. Lai, M.-H. Tu, B.-R. Chen, S. M. Fu, P. Yu, A. Lin. Omnidirectional, polarization-independent, ultra-broadband metamaterial perfect absorber using field-penetration and reflected-wave-cancellation. Opt. Express, 24, A832-A845(2016).

    [55] H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski. Broadband perfect absorber based on one ultrathin layer of refractory metal. Opt. Lett., 40, 2592-2595(2015).

    [56] A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, E. Ozbay. Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth. Sci. Rep., 7, 15079(2017).

    [57] S. A. Dereshgi, A. Ghobadi, H. Hajian, B. Butun, E. Ozbay. Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayer stacks. Sci. Rep., 7, 14872(2017).

    [58] A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, E. Ozbay. Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture. Sci. Rep., 7, 4755(2017).

    [59] A. Ghobadi, S. A. Dereshgi, B. Butun, E. Ozbay. Ultra-broadband asymmetric light transmission and absorption through the use of metal free multilayer capped dielectric microsphere resonator. Sci. Rep., 7, 14538(2017).

    [60] Z. Li, E. Palacios, S. Butun, H. Kocer, K. Aydin. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings. Sci. Rep., 5, 15137(2015).

    [61] Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, L.-Y. Chen. The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition. Nanoscale Res. Lett., 10, 46(2015).

    [62] Lumerical Solutions.

    [63] K. W. Yu, Y. C. Chu, E. M. Y. Chan. Effective-medium theory for two-component nonlinear composites. Phys. Rev. B, 50, 7984-7987(1994).

    [64] D. R. Smith, D. C. Vier, T. Koschny, C. M. Soukoulis. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E, 71, 036617(2005).

    CLP Journals

    [1] Dipa Ghindani, Alireza R. Rashed, Humeyra Caglayan, "Unveiling spontaneous emission enhancement mechanisms in metal–insulator–metal nanocavities," Photonics Res. 9, 237 (2021)

    Amir Ghobadi, Hodjat Hajian, Alireza Rahimi Rashed, Bayram Butun, Ekmel Ozbay, "Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth," Photonics Res. 6, 168 (2018)
    Download Citation