• Laser & Optoelectronics Progress
  • Vol. 56, Issue 19, 190004 (2019)
Hongyi Lin*, Mingyu Wu, Dong Sun, Jie Tang, and Jianjian Ruan
Author Affiliations
  • School of Optoelectronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian 361024, China
  • show less
    DOI: 10.3788/LOP56.190004 Cite this Article Set citation alerts
    Hongyi Lin, Mingyu Wu, Dong Sun, Jie Tang, Jianjian Ruan. Research Progress of Green Lasers Based on Quasi-Phase-Matched Intracavity Frequency Doubling in PPMgLN[J]. Laser & Optoelectronics Progress, 2019, 56(19): 190004 Copy Citation Text show less
    Intracavity frequency doubling 534.7 nm laser based on electrically pumped vertical external-cavity surface-emitting semiconductor laser[7]
    Fig. 1. Intracavity frequency doubling 534.7 nm laser based on electrically pumped vertical external-cavity surface-emitting semiconductor laser[7]
    Intracavity frequency doubling 530 nm green laser based on optically pumped semiconductor chip laser[11]
    Fig. 2. Intracavity frequency doubling 530 nm green laser based on optically pumped semiconductor chip laser[11]
    Diagram of all-solid-state intracavity frequency doubled green laser [15,17]
    Fig. 3. Diagram of all-solid-state intracavity frequency doubled green laser [15,17]
    Diagrams of array green laser pumped by multiple luminous points[29]. (a) Top view of array green laser; (b) side view of array green laser
    Fig. 4. Diagrams of array green laser pumped by multiple luminous points[29]. (a) Top view of array green laser; (b) side view of array green laser
    Green module of Spectralus microship[35]. (a) Nd∶YVO4/PPMgLN bonding crystal; (b) output light spot; (c) green laser package
    Fig. 5. Green module of Spectralus microship[35]. (a) Nd∶YVO4/PPMgLN bonding crystal; (b) output light spot; (c) green laser package
    Schematic and physical drawings of optical-contact green module[38]. (a) Schematic drawing of optical-contact green module; (b) physical drawing of optical-contact green module
    Fig. 6. Schematic and physical drawings of optical-contact green module[38]. (a) Schematic drawing of optical-contact green module; (b) physical drawing of optical-contact green module
    Schematic and physical drawings of M-green module[41]
    Fig. 7. Schematic and physical drawings of M-green module[41]
    Diagram of multi-beam M-green laser[43]
    Fig. 8. Diagram of multi-beam M-green laser[43]
    YearResearch instituteLD cavityGain mediumPPMgLNOutput parameters
    2004[6]Novalux, USAElectricallypumped VECSELGaAsPPLN30 mW, single-frequency,M2<1.2,stability 0.5%
    2009[7]University ofGlamorgan, UKElectrically pumped VECSELA 49-edge-emitter laser barOclaro10 mm,6.92 μm534.7 nm, 1.31 W,EO 1.5%, OO 3.1%
    2010[8]University ofGlamorgan, UKElectrically pumped VECSELA 49-edge-emitter laser barOclaro10 mm,6.92 μm534.2 nm, 1.2 W,temperature bandwidth 1 ℃
    2014[9]PrincetonOptronics,Inc., USAElectricallypumped VECSELInGaAs/GaAs7 mm,6.94 μm531 nm, 4.74 W, EO 18.3%,M2≈13, stability ±1.4%
    2015[10]PrincetonOptronics,Inc., USAElectricallypumped VECSELInGaAs/GaAs7 mm,6.94 μm532 nm, 3.34 W,EO 21.2%, M2 ≈ 13
    2011[11]OSRAM,GermanyOpticallypumped VECSELVECSEL chip1 mm530 nm, 150 mW,5-10 mrad, EO 18%,M2≈1, single-frequency
    2008[12]OSRAM,GermanyOptically pumpedsemiconductor disk lasersOPS chip1.2 mm530 nm, 80 mW,<10 mrad, EO 7%, M2≈1,single-frequency
    Table 1. Output parameters of intracavity frequency doubled semiconductor lasers (OO: optical-to-optical conversion efficiency; EO: electro-optical conversion efficiency)
    YearResearch institutePPMgLN, gain crystalCavityOutput parameters
    2008[13]Matsushita Electric IndustrialCo., Ltd., Japan0.5 mm, 7 μmNd∶YVO4Straight0.7 W, OO 30%, EO 11.8%,operation temperature range 30 ℃
    2008[14]Matsushita Electric IndustrialCo., Ltd., Japan0.5 mm, 7 μmNd∶YVO4Straight1.7 W, OO 39.2%, EO 18.9%,operation temperature range 46 ℃
    2008[15]Chinese Academyof Sciences10 mm Nd∶YVO4Straight908 mW, OO 33.5%, stability2.5%, temperature bandwidth ≈10 ℃
    2009[16]Chinese Academyof Sciences3 mm, 6.9 μmNd∶YVO4V-shaped6.67 W, OO 33.35%,stability 3%
    2010[17]Chinese Academyof Sciences2 mm, 6.93 μmNd∶YVO4Straight1.56 W, OO 52%,temperature bandwidth 15 ℃
    1 mm, 6.93 μmNd∶YVO4Straight1.52 W, OO 50.7%,temperature bandwidth 12 ℃
    2011[18]Qingdao University12 mm, 6.95 μmNd∶YVO4Straight1.2 W, OO 30%,peak power 910 W
    2011[19]McMaster University,Canada2 mm, 7 μmNd∶YVO4Straight1.02 W, OO 37.2%,stability 4%
    2011[20]McMaster University,Canada1 mm Nd∶YVO4Straight1.1 W, OO 37.3%, EO >19%,1.2 temperature tolerance > 30 ℃
    2011[21]Chinese Academyof Sciences1 mm, 6.95 μmNd∶YVO4Straight3.8 W, OO 56%,stability 2.5%
    2012[22]Xiamen University2.5 mm, 7 μmNd∶YVO4Straight6.2 W, OO 43%,stability 5%
    2012[23]Nanjing University4.8 mm, 6.76 μmNd∶GdVO4Z-shaped531.5 nm, 2.4 W, OO 16%, stability5%, temperature bandwidth 7 ℃
    2014[24]Chinese Academyof Sciences1 mm, 6.96 μmNd∶YVO4Straight1.84 W, OO 51%,stability 1%
    2014[25]Chinese Academyof Sciences2 mm, 6.96 μmNd∶YVO4Straight5.6 W, OO 51%, stability 5%,temperature bandwidth 12 ℃
    2014[26]ShandongUniversity2 mm, 7.55 μm,Nd∶Mg∶LiTaO3V-shaped546 nm, 102 mW, OO 2.3%
    7.55, 7.38, 7.22 μm and2 mm, Nd∶Mg∶LiTaO3V-shaped546, 542, 538 nm,62.8 mW, OO 1.4%
    2015[27]Nanjing University ofInformation Science & TechnologyPPLN, 1.3 mm,7 μm Nd∶YVO4Straight1.343 W, OO 32.8%,stability 2%
    2018[28]Shandong NormalUniversity5 mm, 6.92 μmYb∶LYSOZ-shaped529 nm, 90 mW,stability 5%
    Table 2. Output parameters of intracavity frequency doubled all-solid-state lasers
    YearResearch instituteLDPPMgLNOutput parameters
    2008[29]Mitsubishi ElectricCorporation, Japan15 arrayed LDPlanar-waveguide4 mmAverage power 7.6 W, peakpower 10.9 W, OO 40%, EO 20%
    2009[30]Mitsubishi ElectricCorporation, Japan15 arrayed LDPlanar-waveguide4 mmCW 10.8 W,OO 40%, EO 20%
    pulse: peak power 11.4 W,average power 3.8 W, OO 42%
    2009[31]Mitsubishi ElectricCorporation, Japan15 arrayed LDPlanar-waveguide4 mmCW 10.8 W, OO 40%, EO 20%,temperature bandwidth 40 ℃
    2016[32]Chinese Academyof Sciences19 arrayed LD2 mm, 6.95 μm3.12 W, OO 9.2%
    Table 3. Output parameters of Nd∶YVO4/PPMgLN laser pumped by multi-point LD array
    YearResearch instituteModuleOutput parameters
    2009-2011[33-36]Spectralus Corporation, USAMonolithic cavity250 mW, stability 5%, OO 30%, EO >10%
    2010[37]McMaser University, CanadaOptical-contactAverage power 450 mW, peak power541.5 mW, OO 33.5%, EO 16.25%
    2013[38]Chinese Academy of SciencesOptical-contact295 mW, OO 25.5%, stability 2.5%
    2016[39]Yunnan Normal UniversityOptical-contact2 arrayed LD, 200 mW, OO 21.7%
    2017[40]Chinese Academy of SciencesOptical-contact3 arrayed LD, 223.7 mW, stability ±2.5%
    2012[41]McMaser University, CanadaM-green1.02 W (4 W 808 pump), OO 25.5%
    2012[42]McMaser University, CanadaM-green1.15 W (3 W 808 pump) , OO 38.5%
    2013[43]McMaser University, CanadaM-green6-beam array,6.47 W, OO 29.9%
    2013[44]McMaser University, CanadaM-green1.28 W (4.4 W 808 pump), OO 29.1%
    2018[45]McMaser University, CanadaM-green2.9 W, OO >40%
    Table 4. Output parameters of green lasers with Nd∶YVO4/PPMgLN modules
    YearResearchinstitutePPLNPulsemodeAverage outputpowerPulsewidthRepetitionRatePeakpower
    2011[46]Qingdao University12 mm,6.95 μmCr∶YAG,Q-switched765 mW12 ns70 kHz910 W
    2017[47]Nanjing University ofInformation Science & Technology1.2 mmMoS2,Q-switched323 mW320 ns66.7 kHz15 W
    2018[48]Nanjing University ofInformation Science & Technology1.3 mm,7 μmGraphene oxide,Q-switched536 mW98 ns71.4 kHz76.6 W
    2018[49]Nanjing University ofInformation Science & Technology1.2 mm,7 μmMoS2,mode-locked757 mW3.5ps87.2 MHz2.49 kW
    Table 5. Outputparameters of pulsed green lasers
    Hongyi Lin, Mingyu Wu, Dong Sun, Jie Tang, Jianjian Ruan. Research Progress of Green Lasers Based on Quasi-Phase-Matched Intracavity Frequency Doubling in PPMgLN[J]. Laser & Optoelectronics Progress, 2019, 56(19): 190004
    Download Citation