• Acta Optica Sinica
  • Vol. 43, Issue 9, 0924001 (2023)
Weipeng Huang1, Rui Zhou1、2、*, Zhekun Chen1, Gongfa Yuan1, and Qile Liao1
Author Affiliations
  • 1Peng-Tung Sah Institute of Micro-Nano Science and Tecnology,Xiamen University,Xiamen 361005, Fujian , China
  • 2Innovational Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen 361005, Fujian , China
  • show less
    DOI: 10.3788/AOS221915 Cite this Article Set citation alerts
    Weipeng Huang, Rui Zhou, Zhekun Chen, Gongfa Yuan, Qile Liao. Acoustic Signal Monitoring in Laser Ablation of Anti-Reflective Microstructured Silicon Surface[J]. Acta Optica Sinica, 2023, 43(9): 0924001 Copy Citation Text show less
    References

    [1] Liu Y P, Lai T, Li H L et al. Nanostructure formation and passivation of large-area black silicon for solar cell applications[J]. Small, 8, 1392-1397(2012).

    [2] Yang J, Luo F F, Kao T S et al. Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing[J]. Light: Science & Applications, 3, e185(2014).

    [3] Said A J, Recht D, Sullivan J T et al. Extended infrared photoresponse and gain in chalcogen-supersaturated silicon photodiodes[J]. Applied Physics Letters, 99, 073503(2011).

    [4] Meng W L, Zhong H, Hou W et al. Comparison of different etching methods on the morphology and semiconductor characters of black silicon[J]. IOP Conference Series: Materials Science and Engineering, 250, 012015(2017).

    [5] Deng Y L, Juang Y J. Black silicon SERS substrate: effect of surface morphology on SERS detection and application of single algal cell analysis[J]. Biosensors and Bioelectronics, 53, 37-42(2014).

    [6] Parmar V, Kanaujia P K, Bommali R K et al. Efficient surface enhanced Raman scattering substrates from femtosecond laser based fabrication[J]. Optical Materials, 72, 86-90(2017).

    [7] Phan T L, Yu W J. CVD-grown carbon nanotube branches on black silicon stems for ultrahigh absorbance in wide wavelength range[J]. Scientific Reports, 10, 3441(2020).

    [8] Steglich M, Kaesebier T, Schrempel F et al. Self-organized, effective medium black silicon for infrared antireflection[J]. Infrared Physics & Technology, 69, 218-221(2015).

    [9] Zeng Y, Fan X, Chen J et al. Preparation of composite micro/nano structure on the silicon surface by reactive ion etching: enhanced anti-reflective and hydrophobic properties[J]. Superlattices and Microstructures, 117, 144-154(2018).

    [10] Bottein T, Wood T, David T et al. “black” titania coatings composed of sol-gel imprinted Mie resonators arrays[J]. Advanced Functional Materials, 27, 1604924(2017).

    [11] Zhang L X, Wei Q, Huang H H et al. Formation and evolution of black silicon microcolumns with array distribution after IR nanosecond-pulsed laser ablation[J]. Ferroelectrics, 528, 51-57(2018).

    [12] Liu W N, Zhang G J, Huang Y et al. A novel monitoring method of nanosecond laser scribing float glass with acoustic emission[J]. Journal of Intelligent Manufacturing, 1-9(2022).

    [13] Kacaras A, Bachle M, Schwabe M et al. Acoustic emission-based characterization of focal position during ultra-short pulse laser ablation[J]. Procedia CIRP, 81, 270-275(2019).

    [14] Verhoff B, Harilal S S, Freeman J R et al. Dynamics of femto- and nanosecond laser ablation plumes investigated using optical emission spectroscopy[J]. Journal of Applied Physics, 112, 093303(2012).

    [15] Kong F R, Ma J, Carlson B et al. Real-time monitoring of laser welding of galvanized high strength steel in lap joint configuration[J]. Optics & Laser Technology, 44, 2186-2196(2012).

    [16] Papanikolaou A, Tserevelakis G J, Melessanaki K et al. Development of a hybrid photoacoustic and optical monitoring system for the study of laser ablation processes upon the removal of encrustation from stonework[J]. Opto-Electronic Advances, 3, 5-15(2020).

    [17] De Keuster J, Duflou J R, Kruth J P. Monitoring of high-power CO2 laser cutting by means of an acoustic microphone and photodiodes[J]. The International Journal of Advanced Manufacturing Technology, 35, 115-126(2007).

    [18] Grasso M, Demir A G, Previtali B et al. In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume[J]. Robotics and Computer-Integrated Manufacturing, 49, 229-239(2018).

    [19] Yin G L, Xu Z, Zhu T. Distributed real-time monitoring of residual stress during packaging process of optical fiber shape sensor[J]. Acta Optica Sinica, 42, 1606002(2022).

    [20] Chichkov B N, Momma C, Nolte S et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 63, 109-115(1996).

    [21] Hoffmann A, Arnold W. Calculation and measurement of the ultrasonic signals generated by ablating material with a Q-switched pulse laser[J]. Applied Surface Science, 96/97/98, 71-75(1996).

    [22] Lee S, Ahn S, Park C. Analysis of acoustic emission signals during laser spot welding of SS304 stainless steel[J]. Journal of Materials Engineering and Performance, 23, 700-707(2014).

    [23] Stavridis J, Papacharalampopoulos A, Stavropoulos P. Quality assessment in laser welding: a critical review[J]. The International Journal of Advanced Manufacturing Technology, 94, 1825-1847(2018).

    [24] Tserevelakis G J, Pozo-Antonio J S, Siozos P et al. On-line photoacoustic monitoring of laser cleaning on stone: evaluation of cleaning effectiveness and detection of potential damage to the substrate[J]. Journal of Cultural Heritage, 35, 108-115(2019).

    [25] Wu J J, Zhao J B, Qiao H C et al. Acoustic wave detection of laser shock peening[J]. Opto-Electronic Advances, 1, 180016(2018).

    [26] Eschner N, Weiser L, Häfner B et al. Classification of specimen density in Laser Powder Bed Fusion (L-PBF) using in-process structure-borne acoustic process emissions[J]. Additive Manufacturing, 34, 101324(2020).

    [27] Xie X Z, Zhang Y, Huang Q et al. Monitoring method for femtosecond laser modification of silicon carbide via acoustic emission techniques[J]. Journal of Materials Processing Technology, 290, 116990(2021).

    [28] Huang W, Kovacevic R. A neural network and multiple regression method for the characterization of the depth of weld penetration in laser welding based on acoustic signatures[J]. Journal of Intelligent Manufacturing, 22, 131-143(2011).

    [29] So S, Yang Y, Lee T et al. On-demand design of spectrally sensitive multiband absorbers using an artificial neural network[J]. Photonics Research, 9, 153-158(2021).

    [30] Bordatchev E V, Nikumb S K. Effect of focus position on informational properties of acoustic emission generated by laser-material interactions[J]. Applied Surface Science, 253, 1122-1129(2006).

    [31] Su Y, Zhan X P, Zang H W et al. Direct and stand-off fabrication of black silicon with enhanced absorbance in the short-wavelength infrared region using femtosecond laser filament[J]. Applied Physics B, 124, 223(2018).

    [32] Franta B, Pastor D, Gandhi H H et al. Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing[J]. Journal of Applied Physics, 118, 225303(2015).

    Weipeng Huang, Rui Zhou, Zhekun Chen, Gongfa Yuan, Qile Liao. Acoustic Signal Monitoring in Laser Ablation of Anti-Reflective Microstructured Silicon Surface[J]. Acta Optica Sinica, 2023, 43(9): 0924001
    Download Citation