• Acta Optica Sinica
  • Vol. 40, Issue 10, 1010001 (2020)
Daxiang Li1、2 and Zhen Zhang1、*
Author Affiliations
  • 1College of Communication and Infornation Technology, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, China
  • 2Key Laboratory of Ministry of Public Security, Electronic Information Field Inspection and Application Technology, Xi'an, Shaanxi 710121, China
  • show less
    DOI: 10.3788/AOS202040.1010001 Cite this Article Set citation alerts
    Daxiang Li, Zhen Zhang. Improved U-Net Segmentation Algorithm for the Retinal Blood Vessel Images[J]. Acta Optica Sinica, 2020, 40(10): 1010001 Copy Citation Text show less
    Improved U-Net retinal vessel segmentation algorithm model
    Fig. 1. Improved U-Net retinal vessel segmentation algorithm model
    Classic Inception structure
    Fig. 2. Classic Inception structure
    Inception module
    Fig. 3. Inception module
    Schematic diagram of hole convolution under different expansion rates r. (a) r=1;(b) r=2;(c) r=4
    Fig. 4. Schematic diagram of hole convolution under different expansion rates r. (a) r=1;(b) r=2;(c) r=4
    Schematic diagram of cascaded dilated convolution module
    Fig. 5. Schematic diagram of cascaded dilated convolution module
    Internal structure of attention mechanism
    Fig. 6. Internal structure of attention mechanism
    DRIVE dataset (from left to right are the original color fundus image, two expert manual segmentation images, and binary mask image)
    Fig. 7. DRIVE dataset (from left to right are the original color fundus image, two expert manual segmentation images, and binary mask image)
    Retina image preprocessing. (a) Original image of the DRIVE dataset; (b) pre-processed image
    Fig. 8. Retina image preprocessing. (a) Original image of the DRIVE dataset; (b) pre-processed image
    Local blocky information map of retinal blood vessels. (a) Block information of the DRIVE dataset; (b) standard block information
    Fig. 9. Local blocky information map of retinal blood vessels. (a) Block information of the DRIVE dataset; (b) standard block information
    Segmentation of experimental results. (a) Original image preprocessing map; (b) image segmentation standard map; (c) experimental result segmentation map
    Fig. 10. Segmentation of experimental results. (a) Original image preprocessing map; (b) image segmentation standard map; (c) experimental result segmentation map
    Partial blood vessel region segmentation diagram. (a) Original color fundus retinal images; (b) locally fundus retinal images; (c) local standard retinal segmentation images; (d) local retinal segmentation result images
    Fig. 11. Partial blood vessel region segmentation diagram. (a) Original color fundus retinal images; (b) locally fundus retinal images; (c) local standard retinal segmentation images; (d) local retinal segmentation result images
    Comparison of evaluation indexes of different algorithms
    Fig. 12. Comparison of evaluation indexes of different algorithms
    AlgorithmαSenαSpeαAccAUC
    Manual segmentation method by 2th observer0.77960.97170.94640.9466
    Method in Ref. [8]0.7420.9820.9540.862
    Method in Ref. [14]0.76480.98170.9541-
    Method in Ref. [15]0.77630.97680.94950.972
    Method in Ref. [20]0.76310.9820.95380.975
    Method in Ref. [21]0.80530.97670.95460.9771
    Method in Ref. [30]0.76550.97040.94420.9614
    Method in Ref. [31]0.81730.97330.97670.9475
    Our algorithm0.82740.98710.96430.9869
    Table 1. Comparison of test results of different algorithms on the DRIVE dataset
    AlgorithmαSenαSpeαAccAUC
    a0.76590.98040.95280.9765
    b0.80140.98530.95620.9812
    c0.78560.98320.95460.9784
    Our algorithm0.82740.98710.96430.9869
    Table 2. Comparison of test results of different network structures on the DRIVE dataset
    Daxiang Li, Zhen Zhang. Improved U-Net Segmentation Algorithm for the Retinal Blood Vessel Images[J]. Acta Optica Sinica, 2020, 40(10): 1010001
    Download Citation