• Journal of Innovative Optical Health Sciences
  • Vol. 13, Issue 5, 2041003 (2020)
Yaowei Zhu1, Yawei Miao1, Tingting Xue2, Youchang Liu3, Chunying Zheng1, Jiping Ma1, Weiqiang Tan1, Shuguang Wen4, and Chuantao Gu1、4、*
Author Affiliations
  • 1School of Environmental and Municipal Engineering Qingdao University of Technology Qingdao 266580, P. R. China
  • 2China United Test & Evaluation (Qingdao) Co., Ltd. Qingdao 266011, P. R. China
  • 3Qingdao Institute of Textile Fibre Supervision and Inspection, Qingdao 266061, P. R. China
  • 4CAS Key Laboratory of Biobased Materials Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101, P. R. China
  • show less
    DOI: 10.1142/s1793545820410035 Cite this Article
    Yaowei Zhu, Yawei Miao, Tingting Xue, Youchang Liu, Chunying Zheng, Jiping Ma, Weiqiang Tan, Shuguang Wen, Chuantao Gu. The short wave near-infrared fluorescence properties of two p-azaquinodimethane (p-AQM)-based conjugated polymers[J]. Journal of Innovative Optical Health Sciences, 2020, 13(5): 2041003 Copy Citation Text show less
    References

    [1] Y. Ye, L. Zhu, Y. Ma, G. Niu, X. Chen, "Synthesis and evaluation of new iRGD peptide analogs for tumor optical imaging," Bioorg. Med. Chem. Lett. 21, 1146–1150 (2011).

    [2] N. Kosaka, M. Mitsunaga, M. R. Longmire, P. L. Choyke, H. Kobayashi, "Near infrared fluorescenceguided real-time endoscopic detection of peritoneal ovarian cancer nodules using intravenously injected indocyanine green," Int. J. Cancer. 129, 1671–1677 (2011).

    [3] L. Fass, "Imaging and cancer: A review," Mol. Oncol. 2, 115–152 (2008).

    [4] R. Weissleder, M. Pittet, "Imaging in the era of molecular oncology," Nature 452, 580–589 (2008).

    [5] W. Zou, Y. Zhu, C. Gu, Y. Miao, S. Wang, B. Yu, Y. Shen, H. Cong, "Recent advances in synthesis and application of organic near-infrared fluorescence polymers," J. Mater. Sci. 55, 9918–9947 (2020).

    [6] C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, Q. Wang, "In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window," Biomaterials 35, 393–400 (2014).

    [7] A. Rogalski, Infrared Detectors, CRC Press, Boca Raton (2010).

    [8] G. Hong, A. L. Antaris, H. Dai, "Near-infrared fluorophores for biomedical imaging." Nat. Biomed. Eng. 1, 10–31 (2017).

    [9] J. Qi, C. Sun, A. Zebibula, H. Zhang, R. T. T. Kwok, X. Zhao, W. Xi, J. W. Y. Lam, J. Qian, B. Z. Tang, "Real-time and high-resolution bioimaging with bright aggregation-induced emission dots in short-wave infrared region," Adv. Mater. 30, 1706856 (2018).

    [10] Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, Q. Wang, "Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near-infrared window," Nanomed. Nanotechnol. Biol. Med. 12, 464–464 (2016).

    [11] Y. Zhang, Y. Zhang, J. Hong, W. He, K. Zhou, K. Yang, F. Li, G. Chen, Z. Liu, H. Dai, Q. Wang, "Biodistribution, pharmacokinetics and toxicology of Ag2S nearinfrared quantum dots in mice," Biomaterials 34, 3639–3646 (2013).

    [12] G. Chen, F. Tian, Y. Zhang, Y. Zhang, C. Li, Q. Wang, "Tracking of transplanted human mesenchymal stem cells in living mice using near-infrared Ag2S quantum dots," Adv. Funct. Mater. 24, 2481– 2488 (2014).

    [13] B. Dong, C. Li, G. Chen, Y. Zhang, Y. Zhang, M. Deng, Q. Wang, "Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging," Chem. Mater. 25, 2503–2509 (2013).

    [14] X.-L. Liang, N. Bao, X. Luo, S.-N. Ding, "CdZnTeS quantum dots based electrochemiluminescent image immunoanalysis," Biosens. Bioelectron. 117, 145– 152 (2018).

    [15] D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, P. V. Moghe, "Rare-earth-doped biological composites as in vivo shortwave infrared reporters," Nat. Commun. 4, 1345–1346 (2013).

    [16] U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. C. I. Cruz, A. Juarranz, E. Carrasco, F. C. J. M. Veggel, E. Bovero, J. G. Sole, D. Jaque, "Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window," Small 10, 1141–1154 (2014).

    [17] X. Zhang, Z. Zhao, X. Zhang, D. B. Cordes, B. Weeks, B. Qiu, K. Madanan, D. Sardar, J. Chaudhuri, "Magnetic and optical properties of NaGdF4: Nd3t, Yb3t, Tm3t nanocrystals with upconversion/ downconversion luminescence from visible to the near-infrared second window," Nano Res. 8, 636–648 (2015).

    [18] H. Dong, S. Du, X. Zheng, G. Lyu, L. Sun, L. Li, P. Zhang, C. Zhang, C. Yan, "Lanthanide nanoparticles: From design toward bioimaging and therapy," Chem. Rev. 115, 10725–10815 (2015).

    [19] M. A. Alcala, C. M. Shade, H. Uh, S. Y. Kwan, M. Bischof, Z. P. Thompson, K. A. Gogick, A. R. Meier, T. G. Strein, D. L. Bartlett, R. A. Modzelewski, Y. J. Lee, S. Petoud, C. K. Brown, "Preferential accumulation within tumors and in vivo imaging by functionalized luminescent dendrimer lanthanide complexes," Biomaterials 32, 9343–9352 (2011).

    [20] X. Wang, G. Chang, R. Cao, L. Meng, "Structure and properties of near-infrared fluorescent dyes and the bioimaging application," Prog. Chem. 7, 249– 258 (2015).

    [21] Y. Wang, W. Shi, S. Wang, C. Li, M. Qian, J. Chen, R. Huang, "Facile incorporation of dispersed fluorescent carbon nanodots into mesoporous silica nanosphere for pH-triggered drug delivery and imaging," Carbon 108, 146–153 (2016).

    [22] Y. Liu, J. Gong, W. Wu, Y. Fang, Q. Wang, H. Gu, "A novel bio-nanocomposite based on hemoglobin and carboxyl graphene for enhancing the ability of carrying oxygen," Sens. Actuators B. Chem. 222, 588–597 (2016).

    [23] Y. Jiang, D. Cui, Y. Fang, X. Zhen, P. K. Upputuri, M. Pramanik, D. Ding, K. Pu, "Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy," Biomaterials 145, 168–177 (2017).

    [24] Y. Miao, C. Gu, Y. Zhu, B. Yu, Y. Shen, H. Cong, "A conjugated polymer-based nanoparticles with efficient NIR-II fluorescent, photoacoustic and photothermal performance," Chem. Bio.Chem. 20, 2793–2799 (2019).

    [25] Y. Zhu, C. Gu, Y. Miao, B. Yu, Y. Shen, H. Cong, "D-A polymers for fluorescence/photoacoustic imaging and characterization of their photothermal properties," J. Mater. Chem. B 7, 6576–6584 (2019).

    [26] F. Ding, Y. Zhan, X. Lu, Y. Sun, "Recent advances of near-infrared II fluorophores for multifunctional biomedical imaging," Chem. Sci. 9, 4370–4380 (2018).

    [27] Y. Miao, C. Gu, Y. Zhu, B. Yu, Y. Shen, H. Cong, "Recent progress in fluorescence imaging of the near-infrared II window," ChemBioChem 19, 2522– 2541 (2018).

    [28] A. L. Antaris, H. Chen, K. Cheng, Y. Sun, G. Hong, C. Qu, S. Diao, Z. Deng, X. Hu, B. Zhang, X. Zhang, O. K. Yaghi, Z. R. Alamparambil, X. Hong, Z. Cheng, H. Dai, "A small-molecule dye for NIR-II imaging," Nat. Mater. 15, 235–242 (2016).

    [29] F. Ding, C. Li, Y. Xu, J. Li, H. Li, G. Yang, Y. Sun, "PEGylation regulates self-sssembled small-molecule dye-based probes from single molecule to nanoparticle size for multifunctional NIR-II bioimaging," Adv. Healthcare Mater. 7, e1800973 (2018).

    [30] Q. Yang, Z. Ma, H. Wang, B. Zhou, S. Zhu, Y. Zhong, J. Wang, H. Wan, A. Antaris, R. Ma, X. Zhang, J. Yang, X. Zhang, H. Sun, W. Liu, Y. Liang, H. Dai, "Rational design of molecular fluorophores for biological imaging in the NIR-II window," Adv. Mater. 29, 1605497 (2017).

    [31] Q. Yang, Z. Hu, S. Zhu, R. Ma, H. Ma, Z. Ma, H. Wan, T. Zhu, Z. Jiang, W. Liu, L. Jiao, H. Sun, Y. Liang, H. Dai, "Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance," J. Am. Chem. Soc. 140, 1715–1724 (2018).

    [32] M. Qiu, Z. Sun, D. K. Sang, X. Han, H. Zhang, C. Niu, "Current progress in black phosphorus materials and their applications in electrochemical energy storage," Nanoscale 9, 13384–13403 (2017).

    [33] Y. Gou, J. Li, B. Fan, B. Xu, M. Zhou, F. Yang, "Structure and biological properties of mixed-ligand Cu(II) Schiff base complexes as potential anticancer agents," Eur. J. Med. Chem. 134, 207–217 (2017).

    [34] M. Qiu, A. Singh, D. Wang, J. Qu, M. Swihart, H. Zhang, P. Paras, "Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus," Nano Today 25, 135–155 (2019).

    [35] M. Qiu, W. Ren, T. Jeong, M. Won, G. Y. Park, D. K. Sang, L. Liu, H. Zhang, J. S. Kim, "Omnipotent phosphorene: Next generation two-dimensional nanoplatform for multidisciplinary biomedical applications," Chem. Soc. Rev. 47, 5588–5601 (2018).

    [36] X. Fan, C. Jia, J. Yang, G. Li, H. Mao, Q. Jin, J. Zhao, "A microfluidic chip integrated with a highdensity PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells," Biosens. Bioelectron. 71, 380–386 (2015).

    [37] M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang, X. Chen, D. K. Sang, C. Xing, Z. Li, B. Dong, F. Xing, D. Fan, S. Bao, H. Zhang, Y. Cao, "Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy," Nat. Acad. Sci. U. S. A. 115, 501–506 (2018).

    [38] G. Hong, Y. Zou, A. L. Antaris, S. Diao, D. Wu, K. Cheng, X. Zhang, C. Chen, Bo Liu, Y. He, J. Z. Wu, J. Yuan, B. Zhang, Z. Tao, C. Fukunaga, H. Dai, "Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window," Nat. Commun. 5, 4206 (2014).

    [39] M. Qiu, D. Zhu, X. Bao, J. Wang, X. Wang, R. Yang, "WO3 with surface oxygen vacancies as an anode buffer layer for high performance polymer solar cells," J. Mater. Chem. A 4, 894–900 (2016).

    [40] C. Gu, D. Liu, J. Wang, Q. Niu, C. Gu, B. Shahid, B. Yu, H. Cong, R. Yang, "Alkylthienyl substituted asymmetric 2D BDT and DTBT-based polymer solar cells with a power conversion efficiency of 9.2%," J. Mater. Chem. A 6, 2371–2378 (2018).

    [41] M. Qiu, D. Zhu, L. Yan, N. Wang, L. Han, X. Bao, Z. Du, Y. Niu, R. Yang, "Strategy to manipulate molecular orientation and charge mobility in D-A type conjugated polymer through rational fluorination for improvements of photovoltaic performances," J. Phys. Chem. C 120, 22757–22765 (2016).

    [42] C. Gu, M. Xiao, X. Bao, L. Han, D. Zhu, N. Wang, S. Wen, W. Zhu, R. Yang, "Design, synthesis and photovoltaic properties of two -bridged cyclopentadithiophene- based polymers," Polym. Chem. 5, 6551–6557 (2014).

    [43] M. Qiu, R. G. Brandt, Y. Niu, X. Bao, D. Yu, N. Wang, L. Han, L. Yu, S. Xia, R. Yang, "Theoretical study on the rational design of cyanosubstituted P3HT materials for OSCs: Substitution effect on the improvement of photovoltaic performance," J. Phys. Chem. C 119, 8501–8511 (2015).

    [44] C. Gu, C. Zheng, B. Liu, T. Feng, J. Ma, H. Sun, "Synthesis of a dithieno[3,2-b:2',3'-d]silole-based conjugated polymer and characterization of its short wave near-infrared fluorescence properties," J. Innov. Opt. Health Sci. doi: 10.1142/S1793545820410023 (2020).

    [45] M. Qiu, S. Long, B. Li, L. Yan, W. Xie, Y. Niu, X. Wang, Q. Guo, A. Xia, "Toward an understanding of how the optical property of water-soluble cationic polythiophene derivative is altered by the addition of salts: The Hofmeister effect," J. Phys. Chem. C 117, 21870–21878 (2013).

    [46] J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London (1970).

    [47] H. F. Krug, P. Wick, "Nanotoxicology: An interdisciplinary challenge," Angew. Chem. Int. Ed. 50, 1260–1278 (2011).

    [48] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, ?. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT (2009).

    [49] C. Wu, S. J. Hansen, Q. Hou, J. Yu, M. Zeigler, Y. Jin, D. R. Burnham, J. D. McNeill, J. M. Olson, D. T. Chiu, "Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting," Angew. Chem. 123, 3492–3496 (2011).

    [50] H. Liu, P. Wu, S. Kuo, C. Chen, E. Chang, C. Wu, Y. Chan, "Quinoxaline-based polymer dots with ultrabright red to near-infrared fluorescence for in vivo biological imaging," J. Am. Chem. Soc. 137, 10420–10429 (2015).

    [51] M. Zhao, B. Li, P. Wang, L. Lu, Z. Zhang, L. Liu, S. Wang, D. Li, R. Wang, F. Zhang, "Supramolecularly engineered NIR-II and upconversion nanoparticles in vivo assembly and disassembly to improve bioimaging," Adv. Mater. 30, e1804982 (2018).

    Yaowei Zhu, Yawei Miao, Tingting Xue, Youchang Liu, Chunying Zheng, Jiping Ma, Weiqiang Tan, Shuguang Wen, Chuantao Gu. The short wave near-infrared fluorescence properties of two p-azaquinodimethane (p-AQM)-based conjugated polymers[J]. Journal of Innovative Optical Health Sciences, 2020, 13(5): 2041003
    Download Citation