• Infrared and Laser Engineering
  • Vol. 50, Issue 12, 20210131 (2021)
Fengtao He, Jiaqi Li, Jianlei Zhang*, Yi Yang, Qingjie Wang, and Ni Wang
Author Affiliations
  • College of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
  • show less
    DOI: 10.3788/IRLA20210131 Cite this Article
    Fengtao He, Jiaqi Li, Jianlei Zhang, Yi Yang, Qingjie Wang, Ni Wang. Performance analysis of wavelength diversity wireless optical communication system in ocean turbulence[J]. Infrared and Laser Engineering, 2021, 50(12): 20210131 Copy Citation Text show less
    Schematic diagram of UWOC system with wavelength diversity
    Fig. 1. Schematic diagram of UWOC system with wavelength diversity
    Total attenuation coefficient of optical signals of different wavelengths in coastal ocean
    Fig. 2. Total attenuation coefficient of optical signals of different wavelengths in coastal ocean
    Outage probability performance of wavelength diversity UWOC system under different anisotropic factors. (a) No wavelength diversity; (b) Second-order wavelength diversity; (c) Third-order wavelength diversity, 不同各向异性因子下波长分集UWOC系统的中断概率性能变化。(a) 无波长分集;(b) 2阶波长分集;(c) 3阶波长分集,L=10 m
    Fig. 3. Outage probability performance of wavelength diversity UWOC system under different anisotropic factors. (a) No wavelength diversity; (b) Second-order wavelength diversity; (c) Third-order wavelength diversity, 不同各向异性因子下波长分集UWOC系统的中断概率性能变化。(a) 无波长分集;(b) 2阶波长分集;(c) 3阶波长分集,L=10 m
    Comparison of the average BER performance of the UWOC system without wavelength diversity using OC and EGC technology under different anisotropic factors,使用OC与EGC技术的波长分集UWOC系统在不同各向异性因子下的平均BER性能比较,
    Fig. 4. Comparison of the average BER performance of the UWOC system without wavelength diversity using OC and EGC technology under different anisotropic factors, 使用OC与EGC技术的波长分集UWOC系统在不同各向异性因子下的平均BER性能比较,
    Outage probability performance of wavelength diversity UWOC system under different ocean turbulence parameters, (a) kinetic energy dissipation rate , (b) mean square temperature dissipation rate , (c) the ratio of temperature and salinity contribution to ocean turbulence,波长分集UWOC系统在不同海洋湍流参数,(a)动能耗散率,(b)均方温度耗散率, (c)温度与盐度对海洋湍流贡献比值下的中断概率性能变化,
    Fig. 5. Outage probability performance of wavelength diversity UWOC system under different ocean turbulence parameters, (a) kinetic energy dissipation rate , (b) mean square temperature dissipation rate , (c) the ratio of temperature and salinity contribution to ocean turbulence , 波长分集UWOC系统在不同海洋湍流参数,(a)动能耗散率 ,(b)均方温度耗散率 , (c)温度与盐度对海洋湍流贡献比值 下的中断概率性能变化,
    Average BER performance of wavelength diversity UWOC system under different ocean turbulence parameters, (a) kinetic energy dissipation rate , (b) mean square temperature dissipation rate , (c) the ratio of temperature and salinity contribution to ocean turbulence ,波长分集UWOC系统在不同海洋湍流参数,(a)动能耗散率,(b)均方温度耗散率,(c)温度与盐度对海洋湍流贡献比值下的平均BER性能变化,
    Fig. 6. Average BER performance of wavelength diversity UWOC system under different ocean turbulence parameters, (a) kinetic energy dissipation rate , (b) mean square temperature dissipation rate , (c) the ratio of temperature and salinity contribution to ocean turbulence , 波长分集UWOC系统在不同海洋湍流参数,(a)动能耗散率 ,(b)均方温度耗散率 ,(c)温度与盐度对海洋湍流贡献比值 下的平均BER性能变化,
    Average BER performance of wavelength diversity UWOC system using OC technology under different transmission distances
    Fig. 7. Average BER performance of wavelength diversity UWOC system using OC technology under different transmission distances
    CoefficientValue
    Ratio of temperature and salinity contribution to ocean turbulence, $\omega $${\rm{ - }}1$
    Kinetic energy dissipation rate, $\varepsilon /{{\rm{m}}^2} \cdot {{\rm{s}}^{{\rm{ - }}3}}$${10^{{\rm{ - 4}}}}$
    Mean square temperature dissipation rate, ${\chi _T}/{{\rm K}^2} \cdot {{\rm{s}}^{{\rm{ - }}1}}$${10^{{\rm{ - 4}}}}$
    Dynamic viscosity coefficient, $\nu /{{\rm{m}}^2} \cdot {{\rm{s}}^{{\rm{ - }}1}}$${10^{{\rm{ - 5}}}}$
    Receiver diameter, $D/{\rm{mm}}$$1$
    Transmission distance, $L/{\rm{m}}$$10$
    Table 1. Simulation parameters
    Wavelength diversity${u_x} = 1,{u_y} = 1$${u_x} = 1,{u_y} = 2$${u_x} = 2,{u_y} = 2$
    $W{\rm{ = 1}}$$3.{\rm{792}} \times {10^{{\rm{ - 3}}}}$$2.798 \times {10^{{\rm{ - 3}}}}$$2.{\rm{499}} \times {10^{{\rm{ - 4}}}}$
    $W{\rm{ = 2}}$$2.097 \times {10^{{\rm{ - 5}}}}$$1.199 \times {10^{{\rm{ - 5}}}}$$1.{\rm{228}} \times {10^{{\rm{ - 7}}}}$
    $W{\rm{ = 3}}$$3.819 \times {10^{{\rm{ - 7}}}}$$1.{\rm{749}} \times {10^{{\rm{ - 7}}}}$$3.347 \times {10^{{\rm{ - 10}}}}$
    Table 2. Outage probability of wavelength diversity UWOC system under different anisotropy factors
    Wavelength diversity$L{\rm{ = }}5\;{\rm{m}}$$L{\rm{ = 10\;m}}$$L{\rm{ = 1}}5\;{\rm{m}}$
    $W{\rm{ = 1}}$$3.{\rm{42}} \times {10^{{\rm{ - 5}}}}$$2.7 \times {10^{{\rm{ - 3}}}}$$4.308 \times {10^{{\rm{ - 3}}}}$
    $W{\rm{ = 2}}$$1.481 \times {10^{{\rm{ - 8}}}}$$7.634 \times {10^{{\rm{ - 5}}}}$$2.198 \times {10^{{\rm{ - 4}}}}$
    $W{\rm{ = 3}}$$8.761 \times {10^{{\rm{ - 11}}}}$$7.{\rm{375}} \times {10^{{\rm{ - 6}}}}$$3.604 \times {10^{{\rm{ - 5}}}}$
    Table 3. Average BER of wavelength diversity UWOC system using OC technology under different transmission distances
    Fengtao He, Jiaqi Li, Jianlei Zhang, Yi Yang, Qingjie Wang, Ni Wang. Performance analysis of wavelength diversity wireless optical communication system in ocean turbulence[J]. Infrared and Laser Engineering, 2021, 50(12): 20210131
    Download Citation