• Laser & Optoelectronics Progress
  • Vol. 50, Issue 6, 60003 (2013)
Cao Fengzhen*, Zhang Peiqing, Dai Shixun, Wang Xunsi, Xu Tiefeng, and Nie Qiuhua
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop50.060003 Cite this Article Set citation alerts
    Cao Fengzhen, Zhang Peiqing, Dai Shixun, Wang Xunsi, Xu Tiefeng, Nie Qiuhua. Research Progress of High-Nonlinearity Photonic Crystal Fiber Based on Chalcogenide Glass[J]. Laser & Optoelectronics Progress, 2013, 50(6): 60003 Copy Citation Text show less
    References

    [1] Dai Shixun, Yu Xingyan, Zhang Wei et al.. Research progress of chalcogenide glass photonic crystal fiber[J]. Laser & Optoelectronics Progress, 2011, 48(9): 090602

    [2] Xu Yantao, Guo Haitao, Lu Min et al.. Research progress of high nonlinear chalcogenide glass[J]. Materials Review, 2010, 24(10): 52~53

    [3] F. Smektala, L. Brilland, T. Chartier et al.. Recent advances in the development of holey optical fibers based on sulfide glasses[C]. SPIE, 2006, 6128: 61280M

    [4] M. El-Amraoui, G. Gadret, J. C. Jules et al.. Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources[J]. Opt. Express, 2010, 18(25): 26655~26665

    [5] L. Brilland, F. Charpentier, J. Troles et al.. Microstructured chalcogenide fibers for biological and chemical detection, case study: a CO2 sensor[C]. SPIE, 2009, 7503: 750358

    [6] F. Prudenzano, L. Mescia, L. Allegretti et al.. Simulation of mid-IR amplification in Er3+-doped chalcogenide microstructured optical fiber[J]. Opt. Mater., 2009, 31(9): 1292~1295

    [7] N. J. Traynor, A. Monteville, L. Provino et al.. Fabrication and applications of low loss nonlinear holey fibers[J]. Fiber and Integrated Optics, 2009, 28(1): 51~59

    [8] J. Fatome, C. Fortier, T. N. Nguyen et al.. Linear and nonlinear characterizations of chalcogenide photonic crystal fibers[J]. J. Lightwave Technol., 2009, 27(11): 1707~1715

    [9] T. M. Monro, Y. D. West, D. W. Hewak et al.. Chalcogenide holey fibres[J]. Electron. Lett., 2000, 36(24): 1998~2000

    [10] L. Brilland, F. Smektala, G. Renversez et al.. Fabrication of complex structures of holey fibers in chalcogenide glass[J]. Opt. Express, 2006, 14(3): 1280~1285

    [11] J. S. Sanghera, I. D. Aggarwal, L. B. Shaw et al.. Nonlinear properties of chalcogenide glass fibers[J]. J. Optoelectron. Adv. Mater., 2006, 8(6): 2148~2155

    [12] K. S. Kim, R. Stolen. Measurement of the nonlinear index of silica core and dispersion-shifted fibers[J]. Opt. Commun., 2006, 267(2): 505~510

    [13] Quentin Coulombier, Laurent Brilland, Patrick Houizot et al.. Casting method for producing low-loss chalcogenide microstructured optical fibers[J]. Opt. Express, 2010, 18(9): 9107~9112

    [14] N. Granzow, P. Uebel, M. A. Schmidt et al.. Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers[J]. Opt. Lett., 2011, 36(13): 2432~2434

    [15] M. Asobe, T. Kanamori, K. Kubodera. Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches[J]. IEEE J. Quant. Electron., 1993, 29(8): 2325~2333

    [16] M. Asobe. Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching[J]. Opt. Fiber Technol., 1997, 3(2): 142~148

    [17] S. Smolorz, I. Kang, F. Wise et al.. Studies of optical nonlinearities of chalcogenide and heavy-metal oxide glasses[J]. J. Non-Crystal. Solids, 1999, 256-257: 310~317

    [18] G. Lenz, J. Zimmermann, T. Katsufuji et al.. Large Kerr effect in bulk Se-based chalcogenide glasses[J]. Opt. Lett., 2000, 25(4): 254~256

    [19] R. E. Slusher, G. Lenz, J. Hodelin et al.. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers[J]. J. Opt. Soc. Am. B, 2004, 21(6): 1146~1155

    [20] N. G. R. Brederick, T. M. Monro, P. J. Bennett et al.. Nonlinearity in holey optical fibers: measurement and future opportunities[J]. Opt. Lett., 1999, 24(20): 1395~1397

    [21] F. Smekala, F. Desevedavy, L. Brilland et al.. Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared[C]. SPIE, 2007, 6588: 658803

    [22] R. Cherif. Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation[J]. Opt. Engng., 2010, 49(9): 095002

    [23] D. Méchin, L. Brilland, J. Troles et al.. Recent advances in very highly nonlinear chalcogenide photonic crystal fibers and their applications[C]. SPIE, 2012, 8257: 82570C

    [24] Gao Fei, Hou Lantian, Liu Zhaolun et al.. Research progress of photonic crystal fiber′s nonlinear effect[J]. J. Yanshan University, 2008, 32(2): 134~139

    [25] K. S. Kim, R. Stolen. Measurement of the nonliner index of silica core and dispersion-shifted fibers[J]. Opt. Lett., 1994, 19(4): 257~259

    [26] A. Boskovic, S. V. Chernikov. Direct continuous wave measurement of n2 in various type of telecommunication fiber at 1.55 μm[J]. Opt. Lett., 1996, 21(24): 1966~1968

    [27] Chen Guoqing. Measuring method of single-mode fiber′s nonlinear coefficient at 1550 nm[J]. Optical Fiber & Cable and Its Application Technology, 2003, 15(3): 20~23

    [28] Hua Ying, Chen Yongshi. Measurement method of single-mode fiber′s nonlinear coefficient n2/Aeff[J]. Study on Optical Communications, 2002, 28(5): 46~50

    [29] P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi et al.. Highly nonlinear and anomalously dispersive lead sillicate glass holey fibers[J]. Opt. Express, 2003, 11(26): 3568~3573

    [30] H. Chen. Simultaneous measurements of non-linear coefficient, zero-dispersion wavelength and chromatic dispersion in dispersion-shifted fibers by four-wave mixing[J]. Opt. Commun., 2003, 220(4-6): 331~335

    [31] Govind P. Agrawal. Nonlinear Fiber Optics & Applications of Nonlinear Fiber Optics[M]. Jia Donggang, Yu Zhenhong, Tan Bin et al. Transl. Beijing: Publishing House of Electronics Industry, 2010. 317~321

    [32] Wang Qingyue, Hu Minglie, Chai Lu. Progress in nolinear optics with photonic crystal fibers[J]. Chinese J. Lasers, 2006, 33(1): 57~66

    [33] Li Jinyan, Peng Jinggang, Jiang Zuowen et al.. Research and application of high nonlinear photonic crystal fiber[J]. Study on Optical Communications, 2008, 34(4): 1~4

    [34] X. Yan, C. Chaudhari, G. Qin et al.. Ultraflat supercontinuum generation in an As2S3-based chalcogenide core microstructured fiber[C]. SPIE, 2010, 7598: 75981M

    [35] Chi Hao, Jiang Ming, Zhao Huandong et al.. Research progress of photonic crystal fiber′s nonlinear effect and its application[J]. Semiconductor Optoelectronics, 2003, 24(5): 297~300

    [36] Zheng Yunbao. Photonic crystal fiber and characteristics of its nonlinear functional device[J]. Science & Technology Information, 2009, (5): 4~5

    [37] M. Asobe, T. Kanomori, K. Kubodera. Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber[J]. IEEE Photon. Technol. Lett., 1992, 4(4): 362~365

    [38] J. M. Harbold, F. . Ilday, F. W. Wise et al.. Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching[J]. IEEE Photon. Technol. Lett., 2002, 14(6): 822~824

    [39] L. Petit, N. Carlie, K. Richardson et al.. Nonlinear optical properties of glasses in the system Ge/Ga-Sb-S/Se[J]. Opt. Lett., 2006, 31(10): 1495~1497

    [40] Zhou Zhonghua, Tadanori Hashimoto, Hiroyuki Nasu et al.. Two-photon absorption and nonlinear refraction of lanthanum sulfide-gallium sulfide glasses[J]. J. Appl. Phys., 1998, 84(5): 2380~2384

    [41] Kazuhiko Ogusu, Jun Yamasaki, Shinpei Maeda. Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching[J]. Opt. Lett., 2004, 29(3): 265~267

    [42] M. Asobe, H. Ltoh, T. Miyazawa et al.. Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre[J]. Electron. Lett., 1993, 29(22): 1966~1968

    [43] P. Petropoulos, T. M. Monro, W. Belardi et al.. 2R-regenerative all-optical switch based on a highly nonlinear holey fiber[J]. Opt. Lett., 2001, 26(16): 1233~1235

    [44] Liu Jianguo, Kai Guiyun, Xue Lifang et al.. An all-optical switching based on highly nonlinear photonic crystal fiber Sagnac loop mirror[J]. Acta Physica Sinica, 2007, 56(2): 941~945

    [45] M. Asobe, T. Ohara, I. Yokohama et al.. Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre[J]. Electron. Lett., 1996, 32(15): 1396~1397

    [46] O. Aso, S. Arai, T. Yagi et al.. Broadband four-wave mixing generation in short optical fibers[J]. Electron. Lett., 2000, 36(8): 709~711

    [47] M. Westlund, J. Hansryd, P. A. Andrekson et al.. Transparent wavelength conversion in fiber with 24 nm pump tuning range[J]. Electron. Lett., 2002, 38(2): 85~86

    [48] S. D. Le, M. Gay, L. Bramerie et al.. Wavelength conversion in a highly nonlinear chalcogenide microstructured fiber[J]. Opt. Lett., 2012, 37(22): 4576~4578

    [49] Gong Lei, Yin Feifei, Chen Hongwei et al.. Four wave mixing light wavelength conversion of photonic crystal fiber[J]. J. Optoelectronics·Laser, 2010, 21(9): 1320~1323

    CLP Journals

    [1] Wang Cui, Dai Shixun, Zhang Peiqing, Zhang Bin, Wang Xunsi, Shen Xiang, Hou Jing, Wang Rongping, Tao Guangming. Research Progress of Infrared Supercontinuum Generation in Chalcogenide Glass Fibers[J]. Laser & Optoelectronics Progress, 2015, 52(3): 30001

    [2] Sun Lihong, Wang Xunsi, Zhu Qingde, Liu Shuo, Pan Zhanghao, Cheng Ci, Liao Fangxing, Chen Feifei, Dai Shixun. Advance on the Exploration and Evaluation of Highly Nonlinear Chalcogenide Glasses[J]. Laser & Optoelectronics Progress, 2016, 53(2): 20001

    [3] Zhang Zhenying, Chen Fen, Nie Qiuhua, Wang Yonghui, Chen Yu, Shen Xiang, Dai Shixun. Research Progress on Nonlinear Application of Chalcogenide Optical Waveguide[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120003

    Cao Fengzhen, Zhang Peiqing, Dai Shixun, Wang Xunsi, Xu Tiefeng, Nie Qiuhua. Research Progress of High-Nonlinearity Photonic Crystal Fiber Based on Chalcogenide Glass[J]. Laser & Optoelectronics Progress, 2013, 50(6): 60003
    Download Citation