• Infrared and Laser Engineering
  • Vol. 50, Issue 11, 20210619 (2021)
Zhuoya Zhu1、2, Shuai Zhang1、2, Wenna Du1、2、*, Qing Zhang3、*, and Xinfeng Liu1、2
Author Affiliations
  • 1National Center for Nanoscience and Technology, Center for Excellence in Nanoscience of Chinese Academy of Sciences, Key Laboratory of Standardization and Measurement for Nanotechnology of Chinese Academy of Sciences, Beijing 100190, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Department of Materials Science and Engineering, Peking University, Beijing 100871, China
  • show less
    DOI: 10.3788/IRLA20210619 Cite this Article
    Zhuoya Zhu, Shuai Zhang, Wenna Du, Qing Zhang, Xinfeng Liu. Exciton-polaritons in Fabry-Pérot microcavity based on halide perovskites (Invited)[J]. Infrared and Laser Engineering, 2021, 50(11): 20210619 Copy Citation Text show less
    References

    [1] K Huang. Lattice vibrations and optical waves in ionic crystals. Nature, 167, 779-780(1951).

    [2] J J Hopfield. Theory of the contribution of excitons to the complex dielectric constant of crystals. Physical Review Letters, 1, 427-428(1958).

    [3] C Weisbuch, M Nishioka, A Ishikawa, et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Physical Review Letters, 69, 3314-3317(1992).

    [4] J Kasprzak, M Richard, S Kundermann, et al. Bose-einstein condensation of exciton polaritons. Nature, 443, 409-414(2006).

    [5] R Balili, V Hartwell, D Snoke, et al. Bose-einstein condensation of microcavity polaritons in a trap. Science, 316, 1007-1010(2007).

    [6] S Zhang, Y G Zhong, F Yang, et al. Cavity engineering of two-dimensional perovskites and inherent light-matter interaction. Photonics Research, 8, A72-A90(2020).

    [7] G Lerario, A Fieramosca, F Barachati, et al. Room-temperature superfluidity in a polariton condensate. Nature Physics, 13, 837-842(2017).

    [8] L Dominici, G Dagvadorj, J M Fellows, et al. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid. Sci Adv, 1, e1500807(2015).

    [9] S Zhang, J Chen, J Shi, et al. Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity. ACS Photonics, 7, 327-337(2020).

    [10] L Protesescu, S Yakunin, M I Bodnarchuk, et al. Nanocrystals of cesium lead halide perovskites (cspbx(3), x=cl, br, and i): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 15, 3692-3696(2015).

    [11] Q Zhang, S T Ha, X Liu, et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett, 14, 5995-6001(2014).

    [12] J S Weiner, P Y Yu. Free carrier lifetime in semi-insulating gaas from time-resolved band-to-band photoluminescence. Journal of Applied Physics, 55, 3889-3891(1984).

    [13] X H Zhao, M J DiNezza, S Liu, et al. Determination of cdte bulk carrier lifetime and interface recombination velocity of cdte/mgcdte double heterostructures grown by molecular beam epitaxy. Applied Physics Letters, 105, 252101(2014).

    [14] Y Rosenwaks, Y Shapira, D Huppert. Metal reactivity effects on the surface recombination velocity at inp interfaces. Applied Physics Letters, 57, 2552-2554(1990).

    [15] R K Ahrenkiel. Measurement of minority-carrier lifetime by time-resolved photoluminescence. Solid-State Electronics, 35, 239-250(1992).

    [16] Q Zhang, R Su, X F Liu, et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Advanced Functional Materials, 26, 6238-6245(2016).

    [17] R Su, C Diederichs, J Wang, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett, 17, 3982-3988(2017).

    [18] J Hu, L Yan, W You. Two-dimensional organic-inorganic hybrid perovskites: A new platform for optoelectronic applications. Adv Mater, 30, e1802041(2018).

    [19] L Mao, C C Stoumpos, M G Kanatzidis. Two-dimensional hybrid halide perovskites: Principles and promises. J Am Chem Soc, 141, 1171-1190(2019).

    [20] B Saparov, D B Mitzi. Organic-inorganic perovskites: Structural versatility for functional materials design. Chem Rev, 116, 4558-4596(2016).

    [21] T Fujita, Y Sato, T Kuitani, et al. Tunable polariton absorption of distributed feedback microcavities at room temperature. Physical Review B, 57, 12428(1998).

    [22] A Brehier, R Parashkov, J S Lauret, et al. Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors. Applied Physics Letters, 89, 171110(2006).

    [23] J Wenus, R Parashkov, S Ceccarelli, et al. Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity. Physical Review B, 74, 235212(2006).

    [24] G Lanty, S Zhang, J S Lauret, et al. Hybrid cavity polaritons in a zno-perovskite microcavity. Physical Review B, 84, 195449(2011).

    [25] A Fieramosca, Marco L De, M Passoni, et al. Tunable out-of-plane excitons in 2D single-crystal perovskites. ACS Photonics, 5, 4179-4185(2018).

    [26] A Fieramosca, L Polimeno, V Ardizzone, et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci Adv, 5, eaav9967(2019).

    [27] L Polimeno, A Fieramosca, G Lerario, et al. Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites. Advanced Optical Materials, 8, 2000176(2020).

    [28] H Zhu, Y Fu, F Meng, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater, 14, 636-642(2015).

    [29] H Zhou, S Yuan, X Wang, et al. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section. ACS Nano, 11, 1189-1195(2017).

    [30] K Park, J W Lee, J D Kim, et al. Light-matter interactions in cesium lead halide perovskite nanowire lasers. J Phys Chem Lett, 7, 3703-3710(2016).

    [31] S Zhang, Q Y Shang, W N Du, et al. Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/-nanowires. Advanced Optical Materials, 6, 1701032(2018).

    [32] W N Du, S Zhang, J Shi, et al. Strong exciton-photon coupling and lasing behavior in all-inorganic cspbbr3 micro/nanowire fabry-perot cavity. ACS Photonics, 5, 2051-2059(2018).

    [33] Q Shang, C Li, S Zhang, et al. Enhanced optical absorption and slowed light of reduced-dimensional cspbbr3 nanowire crystal by exciton-polariton. Nano Lett, 20, 1023-1032(2020).

    [34] T J S Evans, A Schlaus, Y Fu, et al. Continuous‐wave lasing in cesium lead bromide perovskite nanowires. Advanced Optical Materials, 6, 1700982(2017).

    [35] Q Shang, M Li, L Zhao, et al. Role of the exciton-polariton in a continuous-wave optically pumped cspbbr3 perovskite laser. Nano Lett, 20, 6636-6643(2020).

    [36] R Su, J Wang, J Zhao, et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci Adv, 4, eaau0244(2018).

    [37] R Su, S Ghosh, J Wang, et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nature Physics, 16, 301-306(2020).

    [38] J Wang, H Xu, R Su, et al. Spontaneously coherent orbital coupling of counterrotating exciton polaritons in annular perovskite microcavities. Light Sci Appl, 10, 45(2021).

    [39] R Su, S Ghosh, T C H Liew, et al. Optical switching of topological phase in a perovskite polariton lattice. Sci Adv, 7, eabf8049(2021).

    [40] J J Baumberg, P G Savvidis, R M Stevenson, et al. Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation. Physical Review B, 62, 16247-16250(2000).

    [41] P G Savvidis, J J Baumberg, R M Stevenson, et al. Angle-resonant stimulated polariton amplifier. Phys Rev Lett, 84, 1547-1550(2000).

    [42] J Wu, S Ghosh, R Su, et al. Nonlinear parametric scattering of exciton polaritons in perovskite microcavities. Nano Lett, 21, 3120-3126(2021).

    [43] Q Fan, G V Biesold-McGee, J Ma, et al. Lead-free halide perovskite nanocrystals: Crystal structures, synthesis, stabilities, and optical properties. Angew Chem Int Ed Engl, 59, 1030-1046(2020).

    [44] X Li, J M Hoffman, M G Kanatzidis. The 2D halide perovskite rulebook: How the spacer influences everything from the structure to optoelectronic device efficiency. Chem Rev, 121, 2230-2291(2021).

    [45] X Wang, M Shoaib, X Wang, et al. High-quality in-plane aligned cspbx3 perovskite nanowire lasers with composition-dependent strong exciton-photon coupling. ACS Nano, 12, 6170-6178(2018).

    [46] C Tian, T Guo, S Q Zhao, et al. Low-threshold room-temperature continuous-wave optical lasing of single-crystalline perovskite in a distributed reflector microcavity. RSC Advances, 9, 35984-35989(2019).

    [47] X Zhang, H Shi, H Dai, et al. Exciton-polariton properties in planar microcavity of millimeter-sized two-dimensional perovskite sheet. ACS Appl Mater Interfaces, 12, 5081-5089(2020).

    [48] J Wang, R Su, J Xing, et al. Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite. ACS Nano, 12, 8382-8389(2018).

    [49] P Bouteyre, Nguyen H Son, J S Lauret, et al. Directing random lasing emission using cavity exciton-polaritons. Opt Express, 28, 39739-39749(2020).

    [50] W Bao, X Liu, F Xue, et al. Observation of rydberg exciton polaritons and their condensate in a perovskite cavity. Proc Natl Acad Sci U S A, 116, 20274-20279(2019).

    [51] N H M Dang, D Gerace, E Drouard, et al. Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces. Nano Lett, 20, 2113-2119(2020).

    Zhuoya Zhu, Shuai Zhang, Wenna Du, Qing Zhang, Xinfeng Liu. Exciton-polaritons in Fabry-Pérot microcavity based on halide perovskites (Invited)[J]. Infrared and Laser Engineering, 2021, 50(11): 20210619
    Download Citation